Apostila de Concreto Armado I

40 VISUALIZAÇÕES DOWNLOAD
Cursos 24 Horas - Cursos Online com Certificado
Cursos 24 Horas - Cursos Online com Certificado
40 VISUALIZAÇÕES DOWNLOAD

ESCOLA DE ENGENHARIAR DA UFMG DEPARTAMENTODEENGENHARIA DE ESTRUTURAS – DEEs

Para todo professor de concreto é uma tarefa gratificante escrever sobre o assunto de sua aula, principalmente nesse momento de mudança de norma em que existe uma carência natural de livros e apostilas contemplando as mudanças da nova NB 1, NBR-6118 de Março de 2003.

Essa é a terceira edição da apostila destinada aos alunos do curso de graduação em Engenharia Civil, disciplina Concreto Armado I. Peço a gentileza que me informem todos os erros encontrados para serem consertados edições posteriores.

Os capítulos de flexão simples e fissuração seguem as mesmas formulações das apostilas do Professor José de Miranda Tepedino, de saudosa memória, adaptadas para as mudanças inseridas pela nova norma. No caso da flexão simples essa adaptação foi feita pelo Pof Sebastião Salvador Real Pereira e já utilizada pelos alunos desde o segundo semestre de 2003. Nesses capítulos os trechos entre “aspas”, quando não referenciados de forma diferente, são transcrições das suas apostilas originais.

Para o curso completo de Concreto Armado I, essa apostila deve ser complementada com a apostila de Domínios de Deformação, do Professor. José Celso da Cunha, além naturalmente das notas de aula.

Gostaria de agradecer a todos os professores de concreto do DEEs, que me ajudaram na troca de idéias e nas correções, e com certeza continuarão a contribuir nas próximas edições desta apostila.

Índice ASSUNTOS Página

Capítulo 1 – Materiais 01

Capítulo 2 – Flexão Normal Simples 29

Capítulo 3 – Laje 55

Capítulo 4 – Controle da Fissuração 94

Capítulo 5 – Cisalhamento 113

Capítulo I – MATERIAIS I.1 – Histórico O material composto concreto armado surgiu há mais de 150 anos e se transformou neste período no material de construção mais utilizado no mundo, devido principalmente ao seu ótimo desempenho, economia e facilidade de produção. Abaixo são citadas algumas datas históricas, em termos do aparecimento e desenvolvimento do concreto armado e protendido, conforme Rusch(1981).

1824 – O empreiteiro escocês Josef ASPDIM desenvolveu um processo industrial para fabricação do cimento portland, assim chamado devido à semelhança com a cor das pedras calcáreas encontradas na ilha de Portland.

1849/1855 – O francês Joseph Louiz LAMBOT desenvolveu no sul da França, onde passava suas férias de verão, um barco fabricado com o novo material, argamassa de cimento e areia entremeados por fios de arame. O processo de fabricação era totalmente empírico e acreditando estar revolucionando a industria naval, patenteou o novo produto, apresentando-o na feira internacional de Paris em 1855.

1861 – O paisagista e horticultor francês Joseph MONIER foi na realidade o único a se interessar pela descoberta de seu compatriota Lambot, vendo neste produto a solução para os seus problemas de confinamento de plantas exóticas tropicais durante o inverno parisiense. O ambiente quente e úmido da estufa era favorável ao apodrecimento precoce dos vasos feitos até então de madeira. O novo produto além de bem mais durável apresentava uma característica peculiar: se o barco era feito para não permitir a entrada de água seguramente não permitiria também a sua saída, o que se encaixava perfeitamente à busca de Monier, que a partir desta data começou a produzir vasos de flores com argamassa de cimento e areia, reforçadas com uma malha de aço. Monier além de ser bastante competente como paisagista, possuía um forte tino comercial e viu no novo produto grandes possibilidades passando a divulgar o concreto inicialmente na França e posteriormente na Alemanha e em toda a Europa. Ele é considerado por muitos como o pai do concreto armado. Em 1865 construiu nos arredores de Paris uma ponte de concreto armado com 16,5 m de vão por 4m de largura.

1867 – Monier recebe sua primeira patente para vasos de flores de concreto com armaduras de aço. Nos anos seguintes consegue novas patentes para tubos, lajes e pontes. Construções construídas de forma empírica mostram que o inventor não possuía uma noção clara da função estrutural das armaduras de aço no concreto.

1877 – O advogado americano Thaddeus HYATT publicou sobre seus ensaios com construções de concreto armado. Hyatt já reconhecia claramente o efeito da aderência aço- concreto, da função estrutural das armaduras, assim como da sua perfeita localização na peça de concreto.

1884 – Duas firmas alemãs FREYTAG & HEISDCHUCH e MARSTENSTEIN & JOSSEAUX , compram de Monier os direitos de patente para o sul da Alemanha e reservam- 1886 – As duas firmas alemãs cedem o direito de revenda ao engenheiro G. A WAISS, que funda em Berlim uma empresa para construções de concreto segundo o “Sistema Monier”. Realiza ensaios em “Construções Monier” e mostra através de provas de carga as vantagens econômicas de colocação de barras de aço no concreto, publicando estes resultados em 1887. Nesta mesma publicação o construtor oficial Mathias KOENEN, enviado aos ensaios pelo governo Prussiano, desenvolve baseado nos ensaios, um método de dimensionamento empírico para alguns tipos de “Construções Monier”, mostrando que conhecia claramente o efeito estrutural das armaduras de aço. Deste modo passa a existir uma base tecnicamente correta para o cálculo das armaduras de aço.

1888 – O alemão DOHRING consegue uma patente segunda a qual lajes e vigas de pequeno porte tem sua resistência aumentada através da protensão da armadura, constituída de fios de aço. Surge assim provavelmente pela primeira vez a idéia da protensão deliberada.

1900 – A construção de concreto armado ainda se caracterizava pela coexistência de sistemas distintos, geralmente patenteados. O alemão E. MORSH desenvolve a teoria iniciada por Koenen e a sustenta através de inúmeros ensaios realizados sobre a incumbência da firma WAISS & FREITAG, a qual pertencia. Os conceitos desenvolvidos por Morsh e publicados em 1902 constituem ao longo do tempo e em quase todo o mundo os fundamentos da teoria de dimensionamento de peças de concreto armado.

1906 – O alemão LABES concluiu que a segurança contra abertura de fissuras conduzia a peças antieconômicas. Koenen propôs em 1907 o uso de armaduras previamente distendidas. Foram realizados ensaios em vigas protendidas relatadas por BACH em 1910. Os ensaios mostraram que os efeitos danosos da fissuração eram eliminados com a protensão. Entretanto Koenen e Morsh reconheceram já em 1912 uma perda razoável de protensão devido à retração e deformação lenta do concreto.

o primeiro engenheiro projetista a reconhecer a importância bem maior da protensão na construção civil. Estuda as perdas devido a retração e deformação lenta do concreto e registra várias patentes sobre o sistema Freyssinet de protensão. É considerado o pai do concreto protendido.

I.2 – Viabilidade do concreto armado As três propriedades abaixo em conjunto é que viabilizam o material concreto armado:

• Aderência aço-concreto – esta talvez seja a mais importante das propriedades uma vez que é a responsável pela transferência das tensões de tração não absorvidas pelo concreto para as barras da armadura, garantindo assim o perfeito funcionamento conjunto dos dois • Coeficiente de dilatação térmica do aço e do concreto são praticamente iguais – esta propriedade garante que para variações normais de temperatura, excetuada a situação extrema de incêndio, não haverá acréscimo de tensão capaz de comprometer a perfeita • Proteção da armadura contra a corrosão – Esta proteção que está intimamente relacionada com a durabilidade do concreto armado acontece de duas formas distintas: a proteção física e a proteção química. A primeira é garantida quando se atende os requisitos de cobrimento mínimo preconizado pela NBR 6118(2003) que protege de forma direta as armaduras das intempéries. A proteção química ocorre devido a presença da cal no processo químico de produção do concreto, que envolve a barra de aço dentro do concreto, criando uma camada passivadora cujo ph se situa acima de 13, criando condições inibidoras da corrosão. Quando a frente de carbonatação, que acontece devido a presença de gás carbônico (CO2) do ar e porosidade do concreto, atinge as barras da armação essa camada é despassivada pela reação química do (CO2) com a cal, produzindo ácidos que abaixam o ph desta camada para níveis iguais ou inferiores a 11,5 , criando condições favoráveis para o processo eletro-químico da corrosão se iniciar. A corrosão pode acontecer independentemente da carbonatação, na presença de cloretos (íons cloro Cl-), ou sulfatos (S–).

I.3 – Vantagens do concreto armado • Economia – é a vantagem que juntamente com a segunda a seguir, transformaram o concreto em um século e meio no material para construção mais usado no mundo. • Adaptação a qualquer tipo de forma ou fôrma e facilidade de execução – a produção do concreto não requer mão de obra especializada e com relativa facilidade se consegue • Estrutura monolítica – (monos – única, litos – pedra) esta propriedade garante à estrutura de concreto armado uma grande reserva de segurança devido ao alto grau de hiperestaticidade propiciado pelas ligações bastante rígidas das peças de concreto. Além disso quando a peça está submetida a um esforço maior que a sua capacidade elástica resistente, a mesma ao plastificar, promove uma redistribuição de esforços, transferindo às • Manutenção e conservação praticamente nulas – a idéia que a estrutura de concreto armado é eterna não é mais aceita no meio técnico, uma nova mentalidade associa à qualidade de execução do concreto, em todas as suas etapas, um programa preventivo de manutenção e conservação. Naturalmente quando comparado com outros materiais de construção esta manutenção e conservação acontecem em uma escala bem menor, sem prejuízo no entanto • Resistência a efeitos térmicos-atmosféricos e a desgaste mecânicos.

I.4 – Desvantagens do concreto armado • Peso próprio – a maior desvantagem do concreto armado é seguramente o seu grande peso próprio que limita a sua utilização para grandes vãos, onde o concreto protendido ou mesmo a estrutura metálica passam a ser econômica e tecnicamente mais viáveis. A sua • Dificuldade de reformas e demolições (hoje amenizada com tecnologias avançadas e • Baixo grau de proteção térmica – embora resista normalmente à ação do fogo a estrutura de concreto necessita de dispositivos complementares como telhados e isolamentos térmicos para proporcionar um conforto térmico adequado a construção.

• Fissuração – a fissuração que é um fenômeno inevitável nas peças de concreto armado tracionadas, devido ao baixo grau de resistência à tração do concreto, foi por muitas décadas considerado uma desvantagem do material. Já a partir do final da década de setenta, este fenômeno passou a ser controlado, baseado numa redistribuição das bitolas da armadura de tração, em novos valores de cobrimentos mínimos e até mesmo na diminuição das tensões de serviço das armaduras, pelo acréscimo das mesmas. Cabe salientar que a fissuração não foi eliminada, apenas controlada para valores de aberturas máximas na face do concreto de tal forma a não comprometer a vida útil do concreto armado.

I.5 – Concreto I.5.1 – Propriedades mecânicas do concreto Resistência à compressão A resistência mecânica do concreto a compressão devido a sua função estrutural assumida no material composto concreto armado é a principal propriedade mecânica do material concreto a ser analisada e estudada. Esta propriedade é obtida através de ensaios de compressão simples realizados em corpos de provas (CPs), com dimensões e procedimentos previamente A resistência a compressão depende basicamente de dois fatores: a forma do corpo de prova e a duração do ensaio. O problema da forma é resolvido estabelecendo-se um corpo de prova cilíndrico padronizado, com 15 cm de diâmetro e 30 cm de altura, que é recomendado pela Em outros paises, como por exemplo, a Alemanha, adota-se um corpo de prova cúbico de aresta 20 cm, que para um mesmo tipo de concreto fornece resistência a compressão ligeiramente superior ao obtido pelo cilíndrico. Isto se deve a sua forma, onde o efeito do atrito entre as faces do corpo de prova carregadas e os pratos da máquina de ensaio, confina de forma mais efetiva o CP cúbico que o cilíndrico, devido a uma maior restrição ao deslocamento Adota-se neste caso um fator redutor igual a 0,85 , que quando aplicado ao CP cúbico transforma seus resultados em valores equivalentes aos do CP cilíndrico, podendo assim ser usada a vasta bibliografia alemã sobre o assunto.

Normalmente o ensaio de compressão em corpos de prova é de curta duração e sabe-se a partir dos ensaios realizados pelo alemão Rusch, que este valor é ligeiramente superior ao obtido quando o ensaio é de longa duração. Isto se deve a microfissuração interna do concreto, que se processa mesmo no concreto descarregado, e que no ensaio de longa duração tem seu efeito ampliado devido a interligação entre as microfissuras, diminuindo assim a capacidade resistente do CP a compressão. Uma vez que grande parcela do carregamento que atua em uma estrutura é de longa duração deve-se corrigir os resultados do ensaio de curta duração por um fator, denominado coeficiente de Rusch, igual a 0,85.

Resistência característica do concreto a compressão (fck) Quando os resultados dos ensaios a compressão de um determinado número de CPs são colocados em um gráfico, onde nas abscissas são marcadas as resistências obtidas e nas ordenadas a freqüência com que as mesmas ocorrem, o gráfico final obedece a uma curva Observa-se neste gráfico que a resistência que apresenta a maior freqüência de ocorrência é a resistência média fcj, aos “j” dias, e que o valor eqüidistante entre a resistência média e os pontos de inflexão da curva é o desvio-padrão “s” (ver fig. 1.1), cujos valores são dados respectivamente por:

?f f cj = ci (1.1) n

? (f ? f )2 s = ci cj (1.2) n?1

Frequência Freq,max s s Resist. média fcj Resistência do concreto fc Figura 1.1 – Curva normal de distribuição de freqüências (Curva de Gauss)

Frequência 5% 95% fck Figura 1.2 – Resistência característica do concreto à compressão

Do lote de CPs ensaiados a resistência a ser utilizada nos cálculos é baseada em considerações probabilísticas, considerando-se em âmbito mundial: a resistência característica (fck) do lote de concreto ensaiado aquela abaixo da qual só corresponde um total de 5% dos resultados obtidos (ou seja um valor com 95% de probabilidade de ocorrência)(ver fig. 1.2).

Para um quantil de 5% obtem-se a partir da curva de Gauss: fck = fcj – 1,65 s (1.3)

A partir de resultados de ensaios feitos em um grande número de obras e em todo o mundo percebe-se que o desvio-padrão “s” é principalmente dependente da qualidade de execução e não da resistência do concreto. A NBR-12655(1996) que trata do preparo, controle e recebimento do concreto, define baseada na sua expressão (2.3) que o cálculo da resistência de dosagem deve ser feito segundo a equação:

fcj = fck + 1,65 sd (1.4)

De acordo com a NBR-12655(1996) o cálculo da resistência de dosagem do concreto depende, entre outras variáveis, da condição de preparo do concreto, definida a seguir:

• Condição A (aplicável às classes C10 até C80): o cimento e o os agregados são medidos em massa, a água de amassamento é medida em massa ou volume com dispositivo • Condição B • Aplicável às classes C10 até C25 – o cimento é medido em massa, a água de amassamento é medida em volume mediante dispositivo dosador e os agregados medidos em massa • Aplicável às classes C10 até C20 – o cimento é medido em massa, a água de amassamento é medida em volume mediante dispositivo dosador e os agregados medidos em volume. A umidade do agregado miúdo é determinada pelo menos três vezes durante o serviço do mesmo turno de concretagem. O volume de agregado é corrigido através da curva de • Condição C (aplicável apenas aos concretos de classe C10 e C15): o cimento é medido em massa, os agregados são medidos em volume, a água de amassamento é medida em

Ainda de acordo com a NBR-12655(1996), no início da obra ou em qualquer outra circunstância em que não se conheça o valor do desvio-padrão sd, deve-se adotar para o cálculo da resistência de dosagem os valores apresentados na tabela 1.1, de acordo com a condição de preparo, que deve ser mantida permanentemente durante a construção. Mesmo quando o desvio-padrão seja conhecido, em nenhum caso o mesmo pode ser adotado menor Tabela 1.1 – Desvio- padrão a ser adotado em função da condição de preparo do concreto Condição Desvio-padrão MPa A 4,0 B 5,5 C1) 7,0

1) Para condição de preparo C, e enquanto não se conhece o desvio-padrão, exige-se para os concretos de classe C15 um consumo mínimo de 350 Kg de cimento por metro cúbico.

Módulo de elasticidade longitudinal O módulo de elasticidade longitudinal para um ponto qualquer do diagrama ?x? (tensão x deformação) é obtido pela derivada d?/d? no ponto considerado, que representa a inclinação da tangente à curva no ponto..De todos os módulos tangentes possíveis o seu valor na origem tem grande interesse, uma vez que as tensões de serviço na estrutura não devem superar a 40% da tensão de ruptura do concreto, e neste trecho inicial o diagrama ?x? é praticamente linear. De acordo com o item 8.2.8 da NBR-6118(2003) o módulo de elasticidade ou módulo de deformação tangente inicial é dado por:

Eci = 5600 (fck)1/2 (1.5)

O módulo de elasticidade secante a ser utilizado nas análises elásticas de projeto, principalmente para determinação dos esforços solicitantes e verificação dos estados limites de serviço, deve ser calculado por:

Ecs = 0,85 Eci (1.6)

Coeficiente de Poisson e módulo de elasticidade transversal De acordo com o item 8.2.9 da NBR-6118(2003) para tensões de compressão inferiores a 0,5.fc e para tensões de tração inferiores a fct, o coeficiente de Poisson e o módulo de elasticidade transversal são dados respectivamente por:

? = 0,2 (1.7)

Gc = 0,4 Ecs (1.8)

Diagramas tensão-deformação (?x?) Conforme o item 8.2.10 da NBR-6118(2003) o diagrama ?x? na compressão para tensões inferiores a 0,5 fc pode ser adotado como linear e as tensões calculadas com a lei de Hooke, Para os estados limites últimos o diagrama ?x? na compressão é dado pela figura (1.3) abaixo, onde se nota dois trechos distintos, o primeiro curvo segundo uma parábola de segundo grau, com deformações inferiores a 0,2%, e o segundo constante, com deformações variando de 0,2% a 0,35%. Para o trecho curvo a tensão no concreto é dada por:

? ? ? ?2 ? ?c=0,85fcd?1??1?c?? (1.9) ?? ? 0,002 ? ??

fck 0,85fcd ?c = 0,8 ??? 5f ?1 ? ?1 ? c cd ?? ? 0,0 ?2 ? ?? 02 ? ??

2‰ 3,5‰ ?c Figura 1.3 – Diagramas tensão-deformação do concreto na compressão

Na equação (1.9) fcd representa a resistência de cálculo do concreto dada no item 12.3.3 da NBR-6118(2003).

Na tração o diagrama ?x? é bilinear conforme a figura (1.4) abaixo: ?ct fct 0,9fct Eci 0,15‰ ?ct Figura 1.4 – Diagrama tensão-deformação bi-linear do concreto à tração

Resistência à tração Conforme o item 8.2.5 da NBR-6118(2003) a resistência a tração direta do concreto (fct) é dado por:

fct = 0,9 fct,st (1.10) ou fct = 0,7 fct,f (1.11)

onde fct,st é a resistência a tração indireta e fct,f é a resistência a tração na flexão. Na falta desses valores pode-se obter a resistência média a tração dada por:

fct,m = 0,3 (fck)2/3 (MPa) (1.12)

Os valores inferior e superior para a resistência característica a tração (fctk) são dados por:

fctk,inf = 0,7 fct,m (1.13a)

fctk,sup = 1,3 fct,m (1.13b)

I.5.2 – Características reológicas do concreto Segundo o dicionário Aurélio reologia é “parte da física que investiga as propriedades e o comportamento mecânico dos corpos deformáveis que não são nem sólidos nem líquidos”.

Retração (shrinkage) A retração no concreto é uma deformação independente do carregamento (e, portanto, de direção, sendo, pois, uma deformação volumétrica) que ocorre devido à perda de parte da água dissociada quimicamente do processo de produção do concreto, quando este “seca” em contato com o ar.

A deformação específica de retração do concreto ?cs pode ser calculada conforme indica o anexo A da NBR 6118(2003). Na grande maioria dos casos, permite-se que ela seja calculada simplificadamente através da tabela 1.2. Esta tabela fornece o valor característico superior da

deformação específica de retração entre os instantes to e t?, ?cs(t?, to), em função da umidade relativa do ar e da espessura equivalente ou fictícia em , dada por:

em = (2 Ac) /u (1.14)

Os valores dessa tabela são relativos a temperaturas do concreto entre 10 oC e 20 oC, podendo-se, entretanto, admitir temperaturas entre 0 oC e 40 oC. Esses valores são válidos para concretos plásticos e de cimento Portland comum.

Nos casos correntes das obras de concreto armado, em função da restrição à retração do concreto, imposta pela armadura, satisfazendo o mínimo especificado na NBR-6118(2003), o valor de ?cs(t?, to) pode ser adotado igual a –15×10-5. Esse valor admite elementos estruturais de dimensões usuais, entre 10 cm e 100 cm sujeitos a umidade ambiente não inferior a 75%.

Fluência (creep) A fluência é uma deformação que depende do carregamento e é caracterizada pelo aumento da deformação imediata ou inicial, mesmo quando se mantém constante a tensão aplicada. Devido a esta deformação imediata ocorrerá uma redução de volume da peça, provocando este fato uma expulsão de água quimicamente inerte, de camadas mais internas para regiões superficiais da peça, onde a mesma já tenha se evaporado. Isto desencadeia um processo, ao longo do tempo, análogo ao da retração, verificando-se desta forma um crescimento da deformação inicial, até um valor máximo no tempo infinito, mesmo sob tensão constante.

Da mesma forma que na retração, as deformações decorrentes da fluência do concreto podem ser calculadas conforme indicado no anexo A da NBR-6118(2003). Nos casos em que a tensão ?c(to) não varia significativamente, permite-se que essas deformações sejam calculadas simplificadamente pela expressão:

? 1 ? (t ? t 0 ) ? ?(t?,t0)=?c(t0)? + , ? (1.15) ? E ci (t 0 ) E ci (28) ?

onde: – ?c(t?, to) é a deformação específica total do concreto entre os instantes to e t?; – ?c(to) é a tensão no concreto devida ao carregamento aplicado em to; – ?(t?, to) é o limite para o qual tende o coeficiente de fluência provocado por carregamento aplicado em to.

O valor de ?(t?, to) pode ser calculado por interpolação da tabela 1.2. Esta tabela fornece o valor característico superior do coeficiente de fluência ?(t?, to). O seu valor característico inferior é considerado nulo.

Tabela 1.2 – Valores característicos superiores da deformação especifica de retração ?cs(t?,to) e do coeficiente de fluência ?(t?,to)

Umidade Ambiente % 40 55 75 90 Espessura fictícia 2 Ac/u (cm) 20 60 20 60 20 60 20 60 ?(t?, to) to dias 5 4,4 3,9 3,8 3,3 3,0 2,6 2,3 2,1 30 3,0 2,9 2,6 2,5 2,0 2,0 1,6 1,6 60 3,0 2,6 2,2 2,2 1,7 1,8 1,4 1,4 ?cs(t?, to) %o 5 -0,44 -0,39 -0,37 -0,33 -0,23 -0,21 -0,10 -0,09 30 -0,37 -0,38 -0,31 -0,31 -0,20 -0,20 -0,09 -0,09 60 -0,32 -0,36 -0,27 -0,30 -0,17 -0,19 -0,08 -0,09

I.6.1 – Categoria Nos projetos de estruturas de concreto armado deve ser utilizado aço classificado pela NBR-7480(1996) nas categorias CA-25, CA-50 e CA-60, em que CA significa concreto armado e o número representa o valor característico da resistência de escoamento do aço em kN/cm2. Os valores nominais dos diâmetros, das seções transversais e da massa por metro são os estabelecidos pela NBR-7480(1996), cujos valores mais usados estão na tabela 1.3.

Tabela 1.3 – Valores nominais para fios e barras de aço Diâmetro nominal (mm) Massa Nominal (kg/m) Área nominal da seção (cm2) Fios Barras 5,0 5,0 0,154 0,196 6,0 0,222 0,283 6,3 0,245 0,312 6,4 0,253 0,322 7,0 0,302 0,385 8,0 8,0 0,395 0,503 9,5 0,558 0,709 10,0 10,0 0,617 0,785 – 12,5 0,963 1,227 – 16 1,578 2,011 – 20,0 2,466 3,142 – 22,0 2,984 3,801 – 25,0 3,853 4,909 – 32,0 6,313 8,042 – 40,0 9,865 12,566

I.6.2 – Tipo de superfície Os fios e barras podem ser lisos ou providos de saliências ou mossas. Para cada categoria de aço, o coeficiente de conformação superficial mínimo, ?b , deve atender ao indicado na Para os efeitos desta norma, a conformação superficial é medida pelo coeficiente ?1 , cujo valor está relacionado ao coeficiente de conformação superficial ?b , como estabelecido na tabela 1.3, conforme tabela 8.2 da NBR-6118.

Tabela 1.3 – Relação entre ?1 e ?b Tipo de Barra Coeficiente de conformação superficial ?b ?1 Lisa (CA-25) 1 1 Entalhada (CA-60) 1.2 1.4 Alta aderência (CA-50) ? 1,5 2.25

Para a massa específica do aço da armadura passiva pode ser adotado o valor 7850 kg/m3. O valor do coeficiente de dilatação térmica, para intervalos de temperatura entre 20 oC e 150 oC pode ser adotado como 10-5/ oC. O módulo de elasticidade, na falta de ensaios ou valores fornecidos pelo fabricante, pode ser admitido igual a 210 GPa.

I.6.3 – Diagrama tensão-deformação O diagrama tensão-deformação do aço, os valores característicos da resistência ao escoamento fyk , da resistência a tração fstk e da deformação última de ruptura ?uk devem ser obtidos de ensaios de tração realizados segundo a NBR-6152. O valor de fyk para os aços sem patamar de escoamento é o valor da tensão correspondente à deformação permanente de 2 ‰.

Para cálculo nos estados limites de serviço e último pode-se utilizar o diagrama tensão- deformação simplificado mostrado na figura (1.5) abaixo, para os aços com ou sem patamar de escoamento.

?s Es ?yd 10‰ ?s

Fig. 1.5 – Diagrama tensão-deformação para aços de armaduras passivas

I.7 – Definições da NBR 6118(2003) Concreto estrutural – termo que se refere ao espectro completo das aplicações do concreto como material estrutural

Elementos de concreto simples estrutural – elementos estruturais produzidos com concreto sem nenhuma armadura, ou quando a possui é em quantidades inferiores aos mínimos estabelecidos nesta norma.

Elementos de concreto armado – elementos estruturais produzidos com concreto cujo comportamento estrutural depende da perfeita aderência aço-concreto e onde não se aplicam deformações iniciais nas armaduras.

Elementos de concreto protendido – elementos estruturais produzidos com concreto onde parte da armadura é previamente alongada por equipamentos especiais de protensão com a finalidade de, em condições de serviço, impedir ou limitar a fissuração e os deslocamentos da estrutura e propiciar o melhor aproveitamento de aços de alta resistência no ELU( estado limite último).

Armadura passiva – qualquer armadura que não seja usada para produzir forças de protensão, ou seja, armadura utilizada no concreto armado.

Armadura ativa (de protensão) – armadura constituída por barras, fios isolados ou cordoalhas, destinada a produzir forças de protensão, isto é, armaduras com pré-alongamento inicial.

Estados limites • Estado limite último (ELU) – estado limite relacionado ao colapso, ou a qualquer outra forma de ruína estrutural, que determine a paralisação do uso da estrutura. 1. estado limite último da perda do equilíbrio da estrutura, admitida como 2. estado limite último de esgotamento da capacidade resistente da estrutura no 3. estado limite último de esgotamento da capacidade resistente da estrutura no 6. outros estados limites últimos que eventualmente possam ocorrer em casos • Estados limites de serviço (ELS) 1. Estado limite de formação de fissuras (ELS-F) – estado que se inicia a formação de fissuras. Admite-se que este estado limite é atingido quando a tensão máxima de tração na seção transversal for igual a fct,f , já definida anteriormente como a 2. Estado limite de abertura das fissuras (ELS-W) – estado em que as fissuras se 3. Estado limite de deformações excessivas (ELS-DEF) – estado em que as deformações atingem os limites estabelecidos para utilização normal especificados 4. Estado limite de vibrações excessivas (ELS-VE) – estado em que as vibrações atingem os limites estabelecidos para utilização normal da construção.

I.8 – Ações Na análise estrutural deve ser considerada a influência de todas as ações que possam produzir efeitos significativos para a segurança da estrutura em exame, levando-se em conta os possíveis estados limites últimos e os de serviços. As ações são classificadas conforme a NBR-8681(2003) em permanente, variáveis e excepcionais.

I.8.1 – Ações permanentes Ações permanentes são as que ocorrem com valores praticamente constantes durante toda a vida da construção. As ações permanentes devem ser consideradas com seus valores representativos mais desfavoráveis para a segurança.

I.8.1.1 – Ações permanentes diretas As ações permanentes diretas são constituídas pelo peso próprio e pelos pesos dos elementos • Peso próprio • Peso dos elementos construtivos fixos e de instalações permanentes NBR 6120(1980) • Empuxos permanentes

I.8.1.2 – Ações permanentes indiretas As ações permanentes indiretas são constituídas pelas deformações impostas por retração e fluência do concreto, deslocamentos de apoio, imperfeições geométricas e protensão. • Retração do concreto • Fluência do concreto • Deslocamentos de apoio • Imperfeições geométricas 1. Imperfeições globais 2. Imperfeições locais • Momento mínimo • Protensão

I.8.2 – Ações variáveis I.8.2.1 – Ações variáveis diretas As ações variáveis diretas são constituídas pelas cargas acidentais previstas para o uso da • Cargas acidentais previstas para o uso da construção • Ação do vento • Ação da água • Ações variáveis durante a construção

I.8.2.2 – Ações variáveis indiretas • Variações uniformes de temperatura • Variações não uniformes de temperatura • Ações dinâmicas

I.8.3 – Ações excepcionais No projeto de estruturas sujeitas a situações excepcionais de carregamento, cujos efeitos não podem ser controlados por outros meios, devem ser consideradas ações excepcionais com os valores definidos, em caso particular, por Normas Brasileiras específicas.

I.8.4 – Valores das ações I.8.4.1 – Valores característicos Os valores característicos Fk das ações são estabelecidos na NBR-6118 (2003) em função da variabilidade de suas intensidades.

Para as ações permanentes Fgk , os valores característicos devem ser adotados iguais aos valores médios das respectivas distribuições de probabilidade, sejam valores característicos superiores ou inferiores. Esses valores são aqui definidos ou em normas específicas, como a NBR-6118(2003).

Os valores característicos das ações variáveis Fqk , estabelecidos por consenso em Normas Brasileiras específicas, correspondem a valores que têm de 25% a 35% de probabilidade de serem ultrapassados no sentido desfavorável, durante um período de 50 anos. Esses valores são aqui definidos ou em normas específicas, como a NBR-6118(2003).

I.8.4.2 – Valores representativos As ações são quantificadas por seus valores representativos, que podem ser: 2. valores convencionais excepcionais, que são os valores arbitrados para as ações 3. valores reduzidos, em função da combinação de ações, tais como: • verificações de estados limites últimos, quando a ação considerada se combina com a ação principal.Os valores reduzidos são determinados a partir da expressão ?oFk , que considera muito baixa a probabilidade de ocorrência simultânea dos valores característicos de duas ou mais ações variáveis de naturezas diferentes; • verificação de estados limites de serviço. Estes valores reduzidos são determinados a partir de ?1Fk , que estima um valor freqüente e ?2Fk , que estima valor quase permanente, de uma ação que acompanha a ação principal.

I.8.4.3 – Valores de cálculo Os valores de cálculo Fd das ações são obtidos a partir dos valores representativos, multiplicando-os pelos respectivos coeficientes de ponderação ?f definidos a seguir.

I.8.5 – Coeficientes de ponderação das ações As ações devem ser majoradas pelo coeficiente ?f dado por:

?f = ?f1 . ?f2 . ?f3 (1.16) onde:

• ?f1 – parte do coeficiente de ponderação das ações ?f , que considera a variabilidade das ações • ?f2 – parte do coeficiente de ponderação das ações ?f , que considera a simultaneidade de atuação das ações • ?f3 – parte do coeficiente de ponderação das ações ?f , que considera os desvios gerados nas construções e as aproximações feitas em projeto do ponto de vista das solicitações

I.8.5.1 – Coeficientes de ponderação das ações no ELU Tabela 1.4 – Valores de ?f1 . ?f3

Combinações de ações Ações Permanentes (g) Variáveis (q) Protensão (p) Recalques de apoio e retração D1) F G T D F D F Normais 1,4 1,0 1,4 1,2 1,2 0,9 1,2 0 Especiais ou de construção 1,3 1,0 1,2 1,0 1,2 0,9 1,2 0 Excepcionais 1,2 1,0 1,0 0 1,2 0,9 0 0 Onde: 1) Para as cargas permanentes de pequena variabilidade, como o peso próprio das estruturas, especialmente as pré-moldadas, esse coeficiente pode ser reduzido para 1,3.

I.8.5.2 – Coeficientes de ponderação no ELS Em geral , o coeficiente de ponderação das ações para estados limites de serviço é dado pela expressão: ?f = ?f2 (1.17)

onde ?f2 tem valor variável conforme a verificação que se deseja fazer (tab. 1.5) • ?f2 = 1 para combinações raras • ?f2 = ?1 para combinações freqüentes

I.8.6 – Combinações de ações Um carregamento é definido pela combinação das ações que têm probabilidades não desprezíveis de atuarem simultaneamente sobre a estrutura, durante um período preestabelecido.

Tabela 1.5 – Valores do coeficiente ?f2 Ações ?f2 ?0 ? 1) 1 ?2 Cargas acidentais de edifícios Locais em que não há predominância de peso de equipamentos que permanecem fixos por longos períodos de tempo, nem de elevadas concentrações de pessoas 2) 0,5 0,4 0,3 Locais em que há predominância de pesos de equipamentos que permanecem fixos por longos períodos de tempo, ou de elevada concentração de pessoas 3) 0,7 0,6 0,4 Biblioteca, arquivos, oficinas e garagens 0,8 0,7 0,6 Vento Pressão dinâmica do vento nas estruturas em geral 0,6 0,3 0 Temperatura Variações uniformes de temperatura em relação à média anual local 0,6 0,5 0,3 1) Para os valores ?1 relativos às pontes e principalmente aos problemas de fadiga, ver seção 2) Edifícios residenciais 3) Edifícios comerciais, de escritórios, estações e edifícios públicos

I.8.6.1 – Combinações últimas 1. Combinações últimas normais – Em cada combinação devem estar incluídas as ações permanentes e a ação variável principal, com seus valores característicos e as demais ações variáveis, consideradas secundárias, com seus valores reduzidos de combinação, 2. Combinações últimas especiais ou de construção – Em cada combinação devem estar presentes as ações permanentes e a ação variável especial, quando existir, com seus valores característicos e as demais ações variáveis com probabilidade não desprezível de ocorrência simultânea, com seus valores reduzidos de combinação, conforme NBR- 8681(2003) 3. Combinações últimas excepcionais – Em cada combinação devem estar presentes as ações permanentes e a ação variável excepcional, quando existir, com seus valores representativos e as demais ações variáveis com probabilidade não desprezível de ocorrência simultânea, com seus valores reduzidos de combinação, conforme NBR- 8681(2003). Nesse caso se enquadram, entre outras, sismo, incêndio e colapso 4. Combinações últimas usuais – para facilitar a visualização, essas combinações estão listadas na tabela 11.3 da NBR-6118(2003)

I.8.6.2 – Combinações de serviço São classificadas de acordo com sua permanência na estrutura como:

1. Quase permanente – podem atuar durante grande parte do período de vida da estrutura e sua consideração pode ser necessária na verificação do estado limite de deformações 2. Freqüentes – se repetem muitas vezes durante o período de vida da estrutura e sua consideração pode ser necessária na verificação dos estados limites de formação de fissuras, de abertura de fissuras e de vibrações excessivas. Podem também ser consideradas para verificações de ELS-DEF decorrentes de vento ou temperatura que 3. Raras – ocorrem algumas vezes durante o período de vida da estrutura e sua consideração pode ser necessária na verificação do estado limite de formação de fissuras.

listadas na tabela 11.4 da NBR 6118(2003) I.8.7 – Resistências

I.8.7.1 – Valores característicos Os valores característicos fk das resistências são os que, num lote de material , têm uma determinada probabilidade de serem ultrapassados, no sentido desfavorável para a segurança. Pode ser de interesse determinar a resistência característica inferior fk,inf e a superior fk,sup , que são respectivamente menor e maior que a resistência média fm . Para efeito da NBR-6118 (2003), a resistência característica inferior é admitida como sendo o valor que tem apenas 5% de probabilidade de não ser atingido pelos elementos de um dado lote de material.

I.8.7.2 – Valores de cálculo 1. Resistência de cálculo A resistência de cálculo fd é dada pela expressão:

fd = fk / ?m (1.18)

2. Resistência de cálculo do concreto A resistência de cálculo do concreto fcd é obtida em duas situações distintas: • quando a verificação se faz em data j igual ou superior a 28 dias

fcd = fck / ?c (1.19)

• quando a verificação se faz em data j inferior a 28 dias

fcd = fckj / ?c = (?1).(fck / ?c) (1.19)

sendo ?1 a relação (fckj / fck ) dada por: ?1 = exp{s{1-(28/t)1/2]} (1.20)

s = 0,20 para concreto de cimento CPV-ARI I.8.7.3 – Coeficientes de ponderação das resistências

As resistências devem ser minoradas pelo coeficiente: ?m = ?m1 . ?m2 . ?m3 (1.21)

onde: ?m1 é a parte o coeficiente de ponderação das resistência ?m , que considera a variabilidade da resistência dos materiais envolvidos.

?m2 é a parte do coeficiente de ponderação das resistência ?m , que considera a diferença entre a resistência do material no corpo-de-prova e na estrutura.

?m3 é a parte co coeficiente de ponderação das resistência ?m , que considera os desvios gerados na construção e as aproximações feitas em projeto do ponto de vista das resistências.

Coeficientes de ponderação das resistências no estado limite último (ELU)

Os valores para verificação no ELU estão indicados na tabela 1.6

Tabela 1.6 – Valores dos coeficientes ?c e ?s Combinações Concreto ?c Aço ?s Normais 1.4 1.15 Especiais ou de construção 1.2 1.15 Excepcionais 1.2 1

Coeficientes de ponderação das resistências no estado limite de serviço (ELS)

Os limites estabelecidos para os estados limites de serviço não necessitam de minoração, portanto ?m= 1.

I.9 – Referências Bibliográficas ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2003) – NBR 6118 – Projeto de estruturas de concreto

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (1980) – NBR 6120 – Cargas para cálculo de estruturas de edificações – Procedimento

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (1987) – NBR 6123 – Forças devidas ao vento em edificações – Procedimento

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (1996) – NBR 7480 – Barras e fios de aço destinados a armadura para concreto armado – Especificação

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2003) – NBR 8681 – Ações e segurança nas estruturas – Procedimento

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (1996) – NBR 12655 – Concreto – Preparo, controle e recebimento – Procedimento

RUSCH, H. (1981) – Concreto armado e protendido, propriedades dos materiais e dimensionamento – Editora Campus, Rio de Janeiro

Capítulo 2 – FLEXÃO NORMAL SIMPLES 2.1 – Introdução Dentre os esforços solicitantes o momento fletor M é em condições normais o esforço preponderante no dimensionamento de peças estruturais como lajes e vigas. Quando o momento fletor atua segundo um plano que contenha um dos eixos principais da seção transversal, a flexão é dita normal . Se simultaneamente atua uma força normal N ela é dita normal composta e na ausência desta, flexão normal simples.

Normalmente o momento fletor atua em conjunto com a força cortante V, podendo no entanto em situações especiais, ser o único esforço solicitante. Nesse caso tem-se a flexão pura, situação ilustrada na figura 2.2, no trecho entre as cargas simétricas P, quando se despreza o peso próprio da viga.

Segundo o o item 16.1 da NBR 6118 (2003), o objetivo do dimensionamento, da verificação e do detalhamento é garantir segurança em relação aos estados limites últimos (ELU) e de serviço (ELS) da estrutura como um todo ou de cada uma de suas partes. Essa segurança exige que sejam respeitadas condições analíticas do tipo: Sd ? Rd MS,d ? MR,d (2.1)

Md Rcc z Nd=0Rst Seção Transversal Figura 2.1 – Esforços externos e internos na seção transversal Na figura 2.1, designou-se por Rcc a resultante de compressão no concreto e por Rst a resultante de tração na armadura (aço = steel), na seção em que atua o momento solicitante de cálculo Md. Como é flexão simples, Nd = 0, tem-se que o momento interno resistente é equivalente a ação do binário: Rcc . z = Rst . z = Md (2.2) Quanto ao comportamento resistente à flexão pura, sabe-se que sendo o concreto um material menos resistente à tração do que à compressão, tão logo a barra seja submetida a um momento

PP As Figura 2.2 – Fissuras de flexão fletor capaz de produzir tensões de tração superiores às que o concreto possa suportar, surgem fissuras de flexão transversais, conforme mostrado na figura 2.2.

A “costura” dessas fissuras pela armadura de flexão As impede que as mesmas cresçam indefinidamente ocasionando a ruptura total da peça. Conforme será visto no capítulo 4, a abertura dessas fissuras dependerá substancialmente das características e do detalhamento final da armadura de flexão.

A ruína de uma peça à flexão é um fenômeno de difícil caracterização, devido basicamente a complexidade envolvida no funcionamento conjunto aço-concreto. Portanto para que essa tarefa seja possível convenciona-se que a ruína de uma seção à flexão é alcançada quando, pelo aumento da solicitação, é atingido a ruptura do concreto à compressão ou da armadura à tração. Para seções parcialmente comprimidas, admite-se que ocorra a ruptura do concreto quando o mesmo atinge na sua fibra mais comprimida o encurtamento limite (último) ?cc,u=3,5 ‰. Para o aço admite-se que a ruptura à tração ocorra quando se atinge um alongamento limite (último) ?s,u = 10 ‰. O alongamento máximo de 10 ‰ se deve a uma limitação da fissuração no concreto que envolve a armadura e não ao alongamento real de ruptura do aço, que é bem superior a esse valor.

Atinge-se, então, o estado limite último – ELU, correspondente a ruptura do concreto comprimido ou a deformação plástica excessiva da armadura.O momento fletor Md é o momento de ruptura, enquanto o momento de serviço será o de ruptura dividido pelo coeficiente de ponderação das ações ?f, ou seja:

Msev = Md / ?f (2.3)

Conforme o item 17.2 da NBR 6118, na análise dos esforços resistentes de uma seção de viga ou pilar, devem ser consideradas as seguintes hipóteses básicas:

1. As seções transversais se mantêm planas após a deformação; os vários casos possíveis são 2. a deformação das barras passivas aderentes em tração ou compressão deve ser a mesma do 3. as tensões de tração no concreto, normais à seção transversal, devem ser desprezadas, 4. Para o encurtamento de ruptura do concreto nas seções parcialmente comprimidas considera-se o valor convencional de 3,5 ‰ (domínios 3,4 e 4a da figura 3). Nas seções inteiramente comprimidas (domínio 5) admite-se que o encurtamento da borda mais comprimida, na ocasião da ruptura, varie de 3,5 ‰ a 2 ‰, mantendo-se inalterado e igual a 2 ‰ a deformação a 3/7 da altura da seção, a partir da borda mais comprimida. 5. Para o alongamento máximo de ruptura do aço considera-se o valor convencional de 10 ‰ (domínios 1 e 2 da figura 2.3) a fim de prevenir deformação plástica excessiva. 6. A distribuição das tensões do concreto na seção se faz de acordo com o diagrama parábola-retângulo da figura 2.4. Permite-se a substituição desse por um diagrama retangular simplificado de altura y=0,8 x (x é a profundidade da linha neutra), com a seguinte tensão:

0,85 . fcd = 0,85 . fck / ?c = ?cd = fc (2.4)

no caso em que a largura da seção, medida paralelamente à linha neutra, não diminua a partir desta para a borda comprimida;

0,80 . fcd = 0,80 . fck / ?c = ?cd = fc (2.5)

7 A tensão nas armaduras deve ser obtida a partir das suas deformações usando os diagramas tensão-deformação, com seus valores de cálculo.

d h Alongamento Encurtamento d’ 2,0%o 3,5%o a

2 1 34 A 10,0% ?yd 5 4a B C b 3 h 7

h Figura 2.3 – Domínios de deformação (Tepdino/NBR-6118) ?cd=0,85fcd 3,5%o ?cd=0,85fcd ou 0,80fcd

2,0%o x y = 0.8x Figura 2.4 – Diagramas parábola-retângulo e retangular simplificado do concreto (Tepedino)

2.2 – Seção subarmada, normalmente armada e superarmada No caso particular de flexão simples, dos domínios existentes ficam eliminados os de número 1 (seção totalmente tracionada), 4a e 5 (seção totalmente comprimida), restando pois os domínios possíveis 2,3 e 4.

Os domínios 2 e 3 correspondem ao que se denomina seção sub-armada (a armadura escoa antes da ruptura do concreto à compressão: ?sd ? ?yd). O domínio 4 corresponde ao que se

denomina seção superarmada (o concreto atinge o encurtamento convencional de ruptura antes da armadura escoar: ?sd < ?yd).

Costuma-se chamar normalmente armada uma seção que funciona no limite entre as duas situações acima, isto é, no qual, teoricamente, o esmagamento convencional do concreto comprimido e a deformação de escoamento do aço ocorram simultaneamente. Na figura 2.3 a situação de peças normalmente armadas ocorre no limite entre os domínios 3 e 4.

Segundo Tepedinio “em princípio, não há inconveniente técnico na superarmação, a não ser, talvez, alguma deformação excessiva por flexão, fato que pode ser prevenido. No entanto, a superarmação é antieconômica, pelo mau aproveitamento da resistência do aço. Por isto mesmo, sempre que possível, devem-se projetar seções subarmadas ou normalmente armadas, sendo a mesma desaconselhável pela NBR 6118”.

A NBR 6118 prescreve no item 14.6.4.3 limites para redistribuição de momentos e condições de dutilidade:

“A capacidade de rotação dos elementos estruturais é função da posição da linha neutra no ELU. Quanto menor é x/d, maior é essa capacidade.

Para melhorar a dutilidade das estruturas nas regiões de apoios das vigas ou de ligações com outros elementos estruturais, mesmo quando não forem feitas redistribuições de esforços solicitantes, a posição da linha neutra no ELU deve obedecer aos seguintes limites: a) x/d ? 0,50 para concretos com fck ? 35 MPa; ou b) x/d ? 0,40 para concretos com fck > 35 MPa;”

E no item 17.2.3, dutilidade de vigas: “Nas vigas, principalmente nas zonas de apoio, ou quando feita redistribuição de esforços, é importante garantir boas condições de dutilidade, sendo adotada, se necessário, armadura de compressão que garante a posição adequada da linha neutra (x), conforme 14.6.4.3

A introdução da armadura de compressão para garantir o atendimento de valores menores de x (posição da linha neutra), que estejam nos domínios 2 ou 3, não conduz a elementos estruturais com ruptura frágil (usualmente chamados de superarmados). A ruptura frágil está associada a posição da linha neutra no domínio 4, com ou sem armadura de compressão.”

2.3 – Seção retangular à flexão simples Segundo Tepedino “no caso da seção retangular, pode-se, sem erro considerável e obtendo-se grande simplificação, adotar, para os domínios 2 e 3 (seção subarmada ou normalmente armada), o diagrama retangular para as tensões no concreto, permitido pela NBR 6118, representado na figura 2.5.”

A’s h d’ As d ?s??yd x ?c ? 0,0035 ?’s Md y = 0.8x fc = ?cd = 0,85fcd

A’s?’s Rcc = fc.b.y Asfyd b Figura 2.5 – Seção retangular à flexão simples

Para que a tensão ?sd na armadura tracionada seja igual a fyd, é necessário e suficiente que a profundidade relativa da linha neutra (x/d) seja menor ou igual à profundidade relativa limite do domínio 3, dada por:

? x ? 0,035 ? 3,lim = ? ? = (2.6) ? d ? 3,lim ? yd + 0,035

com ?yd, deformação de cálculo ao escoamento da armadura, dada por:

?yd = fyd / Es (2.7)

De acordo a figura 2.5 pode-se escrever as seguintes equações de equilíbrio:

? MAs = 0 ? Md = Rcc . (d – y/2) + A’s . ?’sd . (d – d’) (2.8)

? Fh = 0 ? Nd = 0 = Rcc + A’s . ?’sd – As . fyd (2.9)

Ao dividir todos os termos da equação (2.8), de equilíbrio em termos de momentos, por uma quantidade que tem a mesma dimensão de um momento, como o termo fc.b.d2, obtém-se uma equação de equilíbrio em termos adimensionais, que depois de substituído o valor de Rcc=fc.b.y e cancelados os valores iguais no numerador e denominador fica:

A’ ?’ ? d’ ? K = K’+ s sd ?1 ? ? (2.10) fcbd ? d ? Onde: M K = d (2.11) fcbd2 é o parâmetro adimensional que mede a intensidade do momento fletor solicitante (externo) de cálculo;

? y? fcby?d ? ? ? 2? y? y ? ? ?? K’= = ?1? ?=???? ? (2.12) fcbd2 d? 2d? ? 2?

é o parâmetro adimensional que mede a intensidade do momento fletor resistente (interno) de cálculo, devido ao concreto comprimido. O terceiro termo de (2.10) mede a intensidade do momento fletor resistente (interno) de cálculo, devido à armadura A’s comprimida.

Na equação (2.12), ? é o valor da profundidade relativa da linha neutra referente ao diagrama retangular simplificado de tensões no concreto, ou seja:

? = (y/d) = 0,8 . (x/d) = 0,8 . ? (2.13)

A equação (2.12) representa uma equação do segundo grau em ? e ,portanto, conforme (2.13), em função da incógnita x (profundidade da linha neutra), que depois de resolvida fornece entre as duas raízes do problema, o seguinte valor possível:

? = 1 ? 1 ? 2K’ (2.14)

Voltando-se à equação (2.10), multiplicando-se e dividindo-se o último termo simultaneamente por fyd, obtém-se a expressão para o cálculo da armadura comprimida A’s:

f bd K ? K’ A’ = c ÷ ? (2.15) s f yd 1 ? d’ d Onde ? representa o nível de tensão na armadura comprimida, dada por:

? = ?’sd / fyd ? 1 (2.16)

A partir da equação de equilíbrio (2.9) determina-se a armadura de tração As dada por:

As = fcby + s sd (2.17) A’ ?’ f yd f yd

Multiplicando-se e dividindo-se simultaneamente o segundo termo de (2.17) por d e substituindo a relação ?’sd / fyd do terceiro termo pela equação (2.16), obtém-se:

fcbd y As = + A’s ? (2.18) f yd d

De (2.13) e (2.14) sabe-se que (y/d) = ? = 1 – (1 – 2.K’)1/2 que levado em(2.18) fornece:

As = As1 + As2 (2.19) com

A =fcbd(1? 1?2K’) (2.20) s1 f yd

fcbd ? (2.21) K K’ As2 = A’s ? = f d’ yd 1 ? d Uma vez calculada a armadura As, com sua parcela As2 pode-se obter a armadura A’s dada por:

A’s = As2 / ? (2.22)

As expressões (2.19) a (2.22) são as utilizadas para o cálculo à flexão de vigas com seção retangular.

A armadura de compressão A’s nem sempre é necessária para equilibrar o momento externo Md (representado adimensionalmente por K), que nesse caso será equilibrado internamente apenas pelo momento devido ao concreto comprimido (representado adimensionalmente por K’). A única possibilidade matemática de se ter armadura A’s nula e conseqüentemente também As2, é fazer em (2.15) ou em (2.21) K = K’. Essa igualdade tem uma explicação física coerente com a situação de armadura simples (sem armadura de compressão), ou seja: – quando o momento externo Md, (K), for equilibrado pelo momento interno devido ao concreto comprimido, (K’), isto é K = K’, não é necessário armadura de compressão.

Conforme visto anteriormente na equação (2.6), a máxima profundidade relativa da linha neutra para se ter seção subarmada ou normalmente armada é a correspondente ao limite do domínio 3. Com essa profundidade limite obtém-se o máximo momento interno resistente K’L, que deve ser equilibrado pelo momento externo limite KL. Para essa situação limite, a partir da equação (2.12), obtém-se:

KL = K’L = ?L (1 – ?L / 2) (2.23)

Com ?L = (y/d)L = 0,8.(x/d)L = 0,8 . ?3,lim (2.24)

O valor de ?3,lim depende do tipo de aço empregado, assim como as outras grandezas da tabela 2.1 abaixo.

Tabela 2.1 – Valores de KL sem a consideração da dutilidade Aço fyd (kN/cm2) ?yd (‰) ?3,lim (x/d)3,lim ?L KL CA-25 21,74 1,035 0,772 0,617 0,427 CA-50 43,48 2,070 0,628 0,503 0,376 CA-60 52,17 2,484 0,585 0,468 0,358

A relação ? = (x/d), além de satisfazer ao limite estabelecido em (2.6), que gerou a tabela 2.1, deve também atender aos limites fixados pela NBR 6118 em 14.6.4.3, para melhoria da dutilidade, que fixa a profundidade relativa limite em:

?lim = (x/d)lim ? 0,50 para concretos com fck ? 35 MPa (2.25) ?lim = (x/d)lim ? 0,40 para concretos com fck ? 35 MPa

Observando-se a tabela 2.1 nota-se que todos os valores de ?3,lim são superiores aos das equações (2.25) e que, portanto, para se atender às prescrições de melhoria de dutilidade das vigas deve-se ter os seguintes valores de KL da tabela 2.2, que agora não mais dependem do tipo de aço, mas sim apenas se a resistência fck do concreto é inferior ou não a 35 MPa.

Tabela 2.2 – Valores finais de KL, com a consideração da dutilidade fck KL ? 35 MPa 0,320 > 35 MPa 0,269

A partir da equação (2.11) e considerando os valores limites da tabela 2.2, obtém-se: Md,L = KL . (fc.b.d2) (2.26)

M d = d (2.27) L K Lfcb onde: • Md,L é o máximo momento fletor de cálculo resistido com armadura simples • dL é a altura útil mínima necessária para resistir ao Md com armadura simples

Caso o momento de cálculo atuante seja maior que Md,L ou ainda que a altura útil seja menor que dL,o que significa em ambos, K > KL, torna-se necessário para o equilíbrio a armadura de compressão A’s. Essa situação, com a utilização simultânea de armadura de tração As e de compressão A’s, caracteriza seções dimensionadas à flexão com armadura dupla.

Conforme já citado a superarmação deve sempre ser evitada, principalmente por ser antieconômica. Na situação de armadura dupla para os valores da tabela 2.2, caso se pretenda absorver um momento solicitante superior ao Md,L apenas com armadura de tração, isso não significa necessariamente peças superarmadas. Já com os valores da tabela 2.1, caso a mesma situação ocorra e seja possível o equilíbrio apenas com armadura simples (só As), essa seção será obrigatoriamente superarmada, uma vez que os limites da tabela 2.1 referem-se ao final do domínio 3.

Na situação de armadura dupla K > KL (Md > Md,L), basta fazer nas equações de dimensionamento à flexão em seções retangulares, equações (2.19) a (2.22), K’ = KL. Essa igualdade significa fisicamente que o momento interno resistente referente ao concreto comprimido K’ é igual ao máximo momento fletor de cálculo resistido com armadura simples KL. Essa parcela do momento total será resistida pelo concreto comprimido e pela armadura tracionada As1. A diferença (Md – Md,L), que em termos adimensionais fica (K – KL), será absorvida pela parcela da armadura de tração As2 e pela armadura de compressão A’s.

No cálculo da armadura A’s aparece o nível de tensão ? na armadura comprimida, que normalmente vale 1, ou seja ?’sd = fyd. A tensão na armadura comprimida ?’sd é função da deformação ?’sd, que por sua vez depende da profundidade relativa da linha neutra ? = (x/d). Na situação de armadura dupla (onde A’s ? 0) essa profundidade relativa é constante e igual a ?lim = (x/d)lim dado na equação (2.25), para cada uma das duas faixas de resistência do concreto (fck? 35 MPa ou fck> 35 MPa).

d d’ xlim ?s ?c,max=0,035 ?’s Figura 2.6 – Diagrama de deformação na armadura dupla

Considerando os valores limites da equação (2.25) nota-se que ambos, (x/d)=0,4 e (x/d)=0,5, são menores que os valores de ?3,lim = (x/d)3,lim da tabela 2.1, para as três categorias de aço CA-25, CA-50 e CA-60. Além disso, o valor da profundidade relativa do domínio 2 é dado por ?2,lim = (x/d)2,lim = (3,5 / 13,5) = 0,259. Pode-se concluir, portanto, que para as três categorias de aço empregados em peças de concreto armado, a profundidade relativa limite que define a armadura dupla estará no domínio 3, ou seja:

?2,lim = 0,259 < ?lim = (x/d)lim < ?3,lim (2.28)

A definição do ELU para o domínio 3 é ?c,max = 3,5 ‰, conforme indicado na figura 2.6. A deformação ?’s pode ser calculada a partir da seguinte equação, retirada por semelhança de triângulos na figura 2.6:

?’ 0,035 s = (2.29) xlim ? d’ xlim

? x ? d’ ??? x ? d’ ? d ? d ?’s = × 0,035 = × 0,035 (2.30) lim lim x ?x? lim ? ? ? d ?lim

40 VISUALIZAÇÕES DOWNLOAD