Curso De Injeção Eletronica

13 VISUALIZAÇÕES DOWNLOAD
Cursos 24 Horas - Cursos Online com Certificado
Cursos 24 Horas - Cursos Online com Certificado
13 VISUALIZAÇÕES DOWNLOAD

Aula 01 – Introdução ao curso O sistema de injeção eletrônica de combustível surgiu no Brasil no final da década de 80, mais precisamente em 1989 com o Gol GTi da Volkswagen do Brasil SA. Logo em seguida vieram outros modelos de outras marcas como o Monza Classic 500 EF, o Kadett GSi, o Uno 1.6R mpi entre outros.

O sistema baseia-se num microprocessador que faz todo o gerenciamento do motor, controlando o seu funcionamento de forma mais adequada possível. Este sistema veio substituir os convencionais sistemas de alimentação por carburador e ignição eletrônica transistorizada. Isso significa que o mesmo cuida de todo o processo térmico do motor, como a preparação da mistura ar/combustível, a sua queima e a exaustão dos gases.

Para que isso seja possível, o microprocessador deve processar as informações de diversas condições do motor, como sua temperatura, a temperatura do ar admitido, a pressão interna do coletor de admissão, a rotação, etc. Esses sinais, depois de processados, servem para controlar diversos dispositivos que irão atuar no sistema de marcha lenta, no avanço da ignição, na injeção de combustível, etc.

A entrada de dados correspondem aos sinais captados no motor, como temperatura, pressão, rotação, etc. Após o processamento (sinais processados), estes sinais são enviados para o controle de diversos dispositivos do sistema (sinais de saída).

Agora, iremos substituir a figura acima por esta: Como podemos observar, os sensores são os elementos responsáveis pela coleta de dados no motor. Esses dados são enviados à unidade de comando onde são processados. Por fim, a unidade irá controlar o funcionamento dos atuadores.

Resumindo: – Entrada de dados »»» Sensores – Sinais processados »»» Unidade de comando – Saída de dados »»» Atuadores A unidade de comando (cérebro de todo o sistema) analisa as informações dos diversos sensores distribuídos no motor, processa e retorna ações de controle nos diversos atuadores, de modo a manter o motor em condições ótimas de consumo, desempenho e emissões de poluentes.

Os sistemas de injeção eletrônica de combustível oferecem uma série de vantagens em relação ao seu antecessor, o carburador: Benefícios: – Maior controle da mistura ar/combustível, mantendo-a sempre dentro dos limites; – Maior rendimento térmico do motor;

Basicamente a construção física do motor não foi alterada com o sistema de injeção. O motor continua funcionando nos mesmos princípios de um sistema carburado, com ciclo mecânico a quatro tempos onde ocorrem a admissão, a compressão, a explosão e o escape dos gases. O que de fato mudou foi o controle da mistura ar/combustível, desde a sua admissão até a sua exaustão total.

O sistema de comando variável, tuchos acionados por intermédio de roletes (motor Ford RoCam) e as bielas fraturadas são tecnologias a parte, que não tem nada a haver com o sistema de injeção.

Podemos dizer que a função principal do sistema de injeção é a de fornecer a mistura ideal entre ar e combustível (relação estequiométrica) nas diversas condições de funcionamento do motor.

Sabemos que, para se queimar uma massa de 15 kg de ar, são necessários 1 kg de gasolina (15:1) ou para uma massa de 9 kg de ar, são necessários 1 kg de álcool etílico hidratado.

Quando a relação da mistura é ideal, damos o nome de relação estequiométrica. Caso essa mistura esteja fora do especificado, dizemos que a mesma está pobre ou rica.

Com isso, para a gasolina temos: 11 : 1 – mistura rica 15 : 1 – mistura ideal (estequiométrica) 18 : 1 – mistura pobre Vimos acima que a mistura ideal para a gasolina é 15 : 1 e para o álcool de 9 : 1. Sendo assim, fica difícil estabelecermos um valor fixo para a relação estequiométrica, uma vez que os valores são diferentes, ou seja, uma mistura que para o álcool seria ideal, para a gasolina seria extremamente rica.

Vimos acima que a mistura ideal para a gasolina é 15 : 1 e para o álcool de 9 : 1. Sendo assim, fica difícil estabelecermos um valor fixo para a relação estequiométrica, uma vez que os valores são diferentes, ou seja, uma mistura que para o álcool seria ideal, para a gasolina seria extremamente rica.

Para se fixar um valor único, iremos agregar a mistura ideal uma letra grega chamado lambda ( l ). Assim temos: l > 1 : mistura pobre.

Uma mistura rica pode trazer como conseqüências: alto nível de poluentes, contaminação do óleo lubrificante, consumo elevado, desgaste prematuro do motor devido ao excesso de combustível que “lava” as paredes dos cilindros fazendo com que os anéis trabalhem com maior atrito.

Bom, agora que já sabemos qual a função principal do sistema de injeção, a partir da próxima aula estaremos dando todas as informações sobre esse sistema. Até mais.

Aula 02 – Classificação O sistema de injeção eletrônica pode ser classificado quanto: Ao tipo de unidade de comando: – Unidade de comando digital.

Ao número de eletro-injetores ou válvulas injetoras: – Monoponto (uma válvula injetora para todos os – Multiponto (uma válvula injetora para cada cilindro).

A forma de abertura das válvulas injetoras: Ao modo de leitura da massa de ar admitido: – Leitura direta da massa de ar.

Ao modo de controle da mistura ar/combustível: De acordo com o sistema de ignição: – Estática.

De acordo com o fabricante do sistema de injeção: – Siemens Das famílias dos sistemas de injeção: – Outros.

Como podemos observar, um sistema de injeção pode ser classificado de diversas maneiras. Vejamos um exemplo: GM Corsa 1.6 MPFI – Multec B22 Como vimos, existem diversos tipos de sistemas de injeção eletrônica com as classificações citadas na página anterior.

Nosso curso irá explicar o funcionamento de todos os sensores e atuadores, bem como as estratégias de funcionamento adotadas por qualquer fabricante. Não iremos falar especificamente em um único sistema e sim, de uma forma global, envolvendo todos os sistemas.

:: A injeção pressurizada de combustível A injeção do combustível se dá através da válvula injetora ou eletro-injetor. Iremos evitar a expressão “bico injetor” devido a sua utilização em motores diesel.

Essa válvula, quando recebe um sinal elétrico da unidade de comando, permite que o combustível pressurizado na linha seja injetado nos cilindros. Trata-se então de um atuador, uma vez que é controlado pela unidade de comando.

A pressão na linha e o tempo de abertura da válvula determina a massa de combustível a ser injetada, portanto, para que a unidade de comando calcule esse tempo, é necessário que primeiramente, se saiba a massa de ar admitido. A pressão na linha é fixa e depende de cada sistema. Independente do seu valor, esses dados são gravados numa memória fixa na unidade de comando (EPROM).

Um motor pode conter uma ou várias válvulas injetoras. Quando se tem apenas uma válvula injetora para fornecer o combustível para todos os cilindros, damos o nome de monoponto. Um motor que trabalha com uma válvula para cada cilindro é denominada multiponto.

Aula 03 – Sistema monoponto Vimos na aula passada que o sistema monoponto utiliza uma única válvula injetora para abastecer todos os cilindros do motor. Ela fica alojada numa unidade chamado de TBI ou corpo de borboleta.

1- Tanque com bomba incorporada 2- Filtro de combustível 3- Sensor de posição de borboleta 3a- Regulador de pressão 3b- Válvula injetora 3c- Sensor de temperatura do ar 3d- Atuador de marcha lenta 4- Sensor de temperatura do motor 5- Sensor de oxigênio 6- Unidade de comando 7- Válvula de ventilação do tanque 8- Bobina de ignição 9- Vela de ignição 10- Sensor de rotação Observe que neste sistema a válvula injetora é centrada, fornecendo o combustível pulverizado para todos os cilindros.

Muitas pessoas ao verem a unidade TBI ainda pensam que é o carburador, devido sua aparência física. Mas as semelhanças param por aí. Lembre-se que no carburador o combustível era succionado por meio de uma depressão, agora, ele é pressurizado e pulverizado.

Devido as exigências na redução de poluentes, este tipo de injeção já não é mais fabricado, prevalecendo nos dias atuais o sistema multiponto.

Talvez você esteja se perguntando: Se o sistema multiponto é mais eficiente que o monoponto, por que ele foi utilizado durante mais de 8 anos? Muito simples, em função do seu custo ser bem inferior ao multiponto.

A partir de 1997 todos os sistemas passaram a ser multiponto, embora algumas montadoras chegaram a ultrapassar esse ano.

No sistema multiponto, a injeção do combustível pressurizado ocorre próximo às válvulas de admissão. Isso significa que no coletor de admissão só passa ar, o que possibilita o aumento no seu diâmetro favorecendo o maior preenchimento dos cilindros. Isto resulta numa melhora significativa da potência no motor.

2- Filtro de combustível 8- Potenciômetro de borboleta 3- Regulador de pressão 9- Unidade de comando 4- Válvula injetora 10- Relé de bomba de combustível 5- Medidor de vazão de ar 11- Vela de ignição 6- Sensor de temperatura do motor Outra vantagem do sistema multiponto está relacionada a emissão de gases tóxicos. Como no coletor de admissão só passa ar, evita-se a condensação do combustível nas paredes frias do coletor. Com isso, melhora-se a mistura e a combustão.

Obs: No sistema multiponto há possibilidade de se utilizar o coletor de admissão de plástico, devido ao não contato com o combustível. A vantagem do coletor de plástico em relação ao coletor de liga de alumínio fundido são: – Menor resistência do ar, devido sua superfície ser extremamente lisa, sem rugosidades; – Mais barato.

Aula 04 – Injeção intermitente ou simultâneo :: Sistema intermitente ou simultâneo No sistema intermitente ou simultâneo, a unidade de comando aciona todas as válvulas injetoras ao mesmo tempo, sendo que apenas um cilindro irá admitir imediatamente e os demais entram em modo de espera, pois, as válvulas de admissão ainda estarão fechadas.

Vamos ver um exemplo num motor de 4 cilindros em linha cuja ordem de explosão ou ignição seja 1-3-4-2. Virabrequim Cilindro 1 Cilindro 2 Cilindro 3 Cilindro 4 Comando 0 – 180o EXPLOSÃO ESCAPE COMPRESSÃO ADMISSÃO 0 – 90o 180 – 360o ESCAPE ADMISSÃO EXPLOSÃO COMPRESSÃO 90 – 180o 360 – 540o ADMISSÃO COMPRESSÃO ESCAPE EXPLOSÃO 180 – 270o 540 – 720o COMPRESSÃO EXPLOSÃO ADMISSÃO ESCAPE 270 – 360o

Observe no quadro acima a distribuição perfeita da dinâmica dos gases no interior do motor a cada giro da árvore de manivelas (virabrequim) e do eixo comando de válvulas.

No modo em fase fria, a unidade de comando aciona os injetoras a cada 180o de gira da árvore de manivelas, o que corresponde a 90o do comando. Isso significa que durante toda a fase de aquecimento do motor, haverá duas injetadas em cada cilindro a cada rotação do motor (360o). Veja o quadro a seguir. Os círculos em verde representam as injetadas em cada cilindro e os quadros em branco os cilindros que já admitiram. Os quadros entre chaves são os Virabrequim Cilindro 1 Cilindro 2 Cilindro 3 Cilindro 4 Comando 0 – 180o {} 0 – 90o 180 – 360o {} 90 – 180o 360 – 540o {} 180 – 270o 540 – 720o {} 270 – 360o 720 – 900o {} 350 – 450o 900 – 1080o {} 450 – 540o

Na tabela acima mostramos como ocorrem as injetadas em cada cilindro do motor, de acordo com o ângulo da árvore de manivelas ou da árvore de comando das válvulas.

Comparando-se as duas tabelas, podemos observar que na primeira linha, que corresponde a um ângulo de 0 a 180o da árvore de manivelas (meia volta) ocorre uma injetada em todos os cilindros, mas somente o quarto cilindro utiliza essa injeta. O primeiro, segundo e terceiro cilindros entram em modo de espera.

No segundo movimento (180o a 360o ) da árvore de manivelas ocorre a segunda injetada. O primeiro cilindro já tinha uma, agora tem duas, o mesmo ocorrendo no terceiro cilindro. O quarto cilindro não tinha nenhuma, agora tem uma. No segundo cilindro havia uma injetada. Ao receber a segunda a válvula de admissão se abre a absorve-se as duas injetadas. Todo esse ciclo se repete até que todos os cilindros passem a receber três injetadas, na quarta ocorre a admissão.

Quando o motor atingir uma determinada temperatura, a unidade a fim de não manter a mistura tão rica, reduz as injetadas em 50%, ou seja, passará a injetar somente a cada 360o de rotação da árvore de manivelas.

Assim, a injeção ocorrerá toda vez que houverem duas injetadas em cada cilindro, uma no modo de espera e a outra quando a válvula de admissão abrir.

Virabrequim Cilindro 1 Cilindro 2 Cilindro 3 Cilindro 4 Comando 0 – 180o 0 – 90o 180 – 360o {} 90 – 180o 360 – 540o {} 180 – 270o 540 – 720o {} 270 – 360o 720 – 900o {} 350 – 450o 900 – 1080o {} 450 – 540o

Para garantir o funcionamento perfeito deste método, é de suma importância que a unidade de comando do sistema de injeção saiba qual a temperatura do motor no momento.

Observe que no primeiro movimento não há injeção em nenhum dos cilindros, pois, ainda não se completaram os 360o de rotação. Já na segunda linha será injetado em todos os cilindros mas somente o segundo cilindro admite a mistura. Na terceira linha, o primeiro cilindro entra em admissão absorvendo a injetada anterior. Em nenhum dos outros cilindros é injetado novamente. Na quarta linha, ocorre uma nova injetada sendo que o terceiro cilindro está em admissão. Os demais estão em modo de espera.

Este método de injeção foi empregado no sistema LE Jetronic da Bosch que equiparam o Gol GTi, o Santana GLSi, o Versailles 2.0i Ghia, o Escort XR-3 2.0i, o Kadett GSi, o Monza Classic 500EF, o Uno 1.6 MPi, etc, logo no início da era injetada.

No sistema Le Jetronic, duas válvulas são acionadas pelo terminal 12 da unidade de comando e as outras duas pelo terminal 24.

Através dos pinos 12 e 24 a unidade de comando aterra as válvulas injetoras, uma vez que o positivo já existe e é comum para todas as válvulas.

Embora exista duas linhas na unidade de comando para acionamento dos injetores, as duas linhas são ativadas simultaneamente, o que gera o acionamento das quatro válvulas ao mesmo tempo.

Na realidade, ainda existe um componente intermediário entre as válvulas e a unidade de comando que são os pré- resistores, cuja função é igualar a impedância das bobinas dos injetores.

Aula 05 – Injeção banco a banco ou semi-sequencial Sistema semi-seqüencial ou banco a banco

Nesse sistema, a injeção do combustível ocorre em blocos, ou seja, são abertas simultaneamente duas válvulas injetoras e as outras duas ficam fechadas. Utiliza duas linhas da unidade de comando, como no método intermitente, porém, cada linha é acionada uma de cada vez.

O método banco a banco de injeção de combustível é o mais utilizado atualmente, devido a sua eficiência satisfatória (superior ao intermitente) e o baixo custo em relação ao método seqüencial.

A injeção somente ocorre no cilindro que estiver admitindo e o que acabou de explodir (esta fica em modo de espera). Também utiliza o método diferenciado de injeção entre as fases fria e aquecido.

No método banco a banco, a unidade de comando do sistema de injeção deve saber exatamente a posição da árvore de manivelas, para que possa injetar somente nos cilindros que estiverem admitindo e o que acabou de explodir. A posição da árvore de manivelas é obtida por sinais elétricos provenientes de um sensor de PMS ou Virabrequim Cilindro 1 Cilindro 2 Cilindro 3 Cilindro 4 Comando 0 – 180o {} 0 – 90o 180 – 360o {} 90 – 180o 360 – 540o {} 180 – 270o 540 – 720o {} 270 – 360o 720 – 900o {} 350 – 450o 900 – 1080o {} 450 – 540o

:: Sistema seqüencial Para adotar esse método de injeção, a unidade de comando além de saber a posição da árvore de manivelas ainda é necessário saber o que cada cilindro está fazendo. Para isso, utiliza-se um sensor de fase que determina quando o primeiro cilindro está em fase de explosão. Daí por diante, o sistema somente injeta no cilindro que estiver admitindo.

O método seqüencial é o mais preciso de todos, porém, mais caro devido ao maior número de saídas de controle da unidade de comando (4 independentes). Não há perdas no sistema por condensação do combustível, pois, a cada Virabrequim Cilindro 1 Cilindro 2 Cilindro 3 Cilindro 4 Comando 0 – 180o {} 0 – 90o 180 – 360o {} 90 – 180o 360 – 540o {} 180 – 270o 540 – 720o {} 270 – 360o 720 – 900o {} 350 – 450o 900 – 1080o {} 450 – 540o

Os sistemas de comando sequencial podem, em função de sua própria estratégia, comandarem as válvulas injetoras de forma defasada, ou seja, comandar a abertura das válvulas antes mesmo da abertura da válvula de admissão.

Aula 06 – Unidade de comando :: Unidade de comando- tipos A unidade de comando, também conhecido por UCE, ECU, ECM, MCE e centralina é o cérebro de todo o sistema de injeção. É ela que recebe os sinais de entrada (sensores), processa e aciona os atuadores. Sua localização depende muito do automóvel, podendo estar: Na coluna da porta dianteira (lado do carona ou motorista) ou no compartimento do motor.

Unidade de comando digital Unidade de comando analógica

O primeiro sistema de injeção lançado no Brasil (1989) foi o Le Jetronic da Bosch. Trata-se de um sistema multiponto intermitente cuja unidade de comando é analógica.

Este sistema chegou a equipar o Gol GTi, o Monza Classic 500EF, o Escort XR3 2.0i, o Santana GLSi, o Kadett GSi, o Versailles Ghia 2.0i, o Uno 1.6R MPI, etc. Logo em seguida surgiu a injeção digital com os sistemas Multec TBI 700 da AC Rochester, o G6/7 da Magneti Marelli e o Motronic da Bosch.

Deste o seu lançamento, inúmeros sistemas foram lançados (ver relação na aula anterior). Atualmente, os grandes fabricantes de sistemas de injeção são: Bosch, Magneti Marelli, Delphi (antiga AC Rochester), FIC, Siemens e uma parceria entre a VW, Bosch e Helia.

Dentre esses fabricantes, surgiram diversas famílias como: Jetrônic, Motronic e Monomotronic (Bosch), G6/7, Microplex e IAW (Magneti Marelli), EEC-IV e EEC-V (FIC), Multec (Delphi), Simos (Siemens) e Digifant (VW, Bosch e Helia).

Para cada uma das famílias foram surgindo os seus devidos sistemas. Veja um exemplo apenas da família IAW da Magneti Marelli: IAW-4V3-P8, IAW-4Q3-P8, IAW-G7, IAW 1AB, IAW 1AVB, etc.

Caro aluno, creio que você está percebendo a imensa quantidade de sistemas de injeção que isso oferece, cada um com características próprias. Daí a necessidade do mecânico automobilístico estar sempre atualizado. Atualmente já estamos na era das unidades de comando com circuitos híbridos, o que reduziu a mesma ao tamanho de uma maço de cigarros.

Com exceção do sistema LE Jetrônic, todos os demais sistemas utilizam unidades de comando digital, independe ser monoponto, multiponto banco a banco ou seqüencial.

Para todos os sistemas de injeção o sistema de ignição é digital e mapeada, inclusive o Le Jetrônic. Este sistema necessita de duas unidades de comando, uma para a injeção analógica e outra para a injeção digital.

Módulo EZK da ignição digital mapeada Na figura ao lado trazemos o módulo EZK, responsável pelo sistema de ignição mapeada.

Na linha GM, essa unidade comando tanto o disparo da centelha como o seu avanço. Na linha VW, apenas o avanço, necessitando de uma terceira unidade, o já conhecido TSZ-i.

:: Ignição mapeada Antigamente, o avanço da ignição ocorria automaticamente por meio de dois dispositivos, os avanços automáticos a vácuo e centrífugo, que se localizavam no distribuidor.

Esquema do distribuidor desmontado 1. Cabo da bobina ao distribuidor 2. Conector 3. Isolante 4. Cabo massa 5. Cabo de vela 6. Conector da vela 7. Vela de ignição 8. Tampa do distribuidor 9. Enrolamento de indução 10. Suporte do enrolamento 11. Ponta do estator 12. Ponta do rotor 13. Imã permanente 14. Condutor de comando de dois fios 15. Placa do suporte 16. Avanço automático centrífugo 17. Rotor do distribuidor 18. Dispositivo de avanço a vácuo

O avanço centrífugo age de acordo com a rotação do motor. Quanto maior, maior deverá ser o avanço. O dispositivo a vácuo avança a ignição de acordo com a carga do motor.

Com o sistema de injeção e ignição digital e mapeada, esses avanço começou a ser controlado eletronicamente, sem interferência mecânica, por meio da unidade de comando do sistema de injeção (sistema digital) ou pelo módulo EZK (sistema analógico).

O gráfico acima mostra as curvas de avanço em comparação ao método convencional e a mapeada. Veja que a diversificação da ângulos de avanço é muito superior na ignição mapeada.

Para que o sistema avance automaticamente a ignição são necessárias três informações: rotação, carga e temperatura do motor. Os sinais de rotação e carga servem para a unidade de comando calcular o avanço substituindo os avanços centrífugo e a vácuo. A temperatura serve para corrigir esse avanço na fase de aquecimento do motor. Todas essas informações são captadas pelos sensores.

Aula 07 – Unidade de comando II Com exceção do sistema Le Jetronic, que utiliza uma unidade analógica e necessita de uma outra unidade para o sistema de ignição, todos os demais sistemas já trabalham com os sistemas de injeção e ignição incorporadas numa única unidade de comando digital.

A figura ao lado apresenta uma unidade de comando com A maioria dos componentes são miniaturizados e soldados em superfície e vários dos componentes são específicos, não sendo encontrado em lojas de componentes eletrônicos.

Em função da eletricidade estática que se acumula no corpo humano, não devemos tocar os pinos da unidade de comando para não danificá-la de forma irreversível.

O módulo de injeção digital possui duas memórias de extrema importância para o sistema que são: A memória RAM e a EPROM.

:: Memória RAM: Randon Access Memory ou memória de acesso aleatório Guarda informações enviadas pelos diversos sensores espalhados no motor para que o processador principal da unidade de comando possa efetuar os cálculos. Essa memória também pode guardar informações sobre as condições do sistema através de códigos de defeitos. A memória RAM pode ser apagada, ou seja, pode-se eliminar todas as informações gravadas. Para isso, basta cortar a sua alimentação, como por exemplo, desligando a bateria.

:: Memória EPROM: Erasable Ready Only Memory ou Memória de Leitura Cancelável e Reprogramável Nesta memória estão armazenados todos os dados do sistema e do motor, como curvas de avanço, cilindrada do motor, octanagem do combustível etc. Embora seja uma memória de leitura, através de modernos processos ela pode ser cancelada e reprogramada novamente, alterando os seus valores de calibração. Algumas empresas reprogramam essa memória para dar uma maior rendimento no motor às custas de uma mistura mais rica.

A grande vantagem de um sistema digital é a sua capacidade de armazenar dados numa memória de calibração (EPROM) e depois compará-la com os sinais enviados pelos sensores. Se algum valor estiver fora dos parâmetros, a unidade de comando começará a ignorar esse sinal buscando outras alternativas para manter o motor em funcionamento. Nesse momento, é gravado um código de defeito numa outra memória (memória RAM) e, ao mesmo tempo, informa ao condutor através de uma luz de anomalia (localizada no painel de instrumentos) que existe alguma falha no sistema de injeção/ ignição eletrônica.

A figura acima mostra como os sinais chegam à unidade de comando, são processados e saem para controlar os atuadores do sistema.

O diagrama em blocos na figura da página anterior, mostra um típico módulo microprocessado. Neste diagrama, distinguimos sete funções distintas e cada uma implementa determinada função. Elas são: ? Regulador de tensão ? Processamento do sinal de entrada ? Memória de entrada ? Unidade Central de Processamento (CPU) ? Memória programa ? Memória de saída ? Processamento do sinal de saída.

Estas áreas estão conectadas entre si. Para entender cada uma dessas partes, iremos discutir primeiramente o regulador de tensão interno.

:: Regulador de tensão interno O módulo e os vários sensores, requerem uma alimentação muito estabilizada. A unidade de comando possui seu próprio regulador/ estabilizador. Muitos dos sensores como os sensores de temperatura do ar e do líquido de arrefecimento, o sensor de posição de borboleta e o sensor de pressão absoluta do coletor de admissão necessitam de uma tensão de 5 volts como referência. Isso se deve ao tipo de circuitos integrados utilizados na unidade de comando que só operam com esse valor de tensão.

Observe na figura acima que a unidade de comando envia um sinal de referência (5 volts) ao sensor de posição de borboleta pela linha B, sendo a linha A aterrada na própria unidade de comando. Através da linha C o sinal retorna à unidade de comando com um valor de tensão variável entre 0 e 5 volts.

Esse sinal de referência deve ter uma variação mínima (entre 4,95 a 5,05 volts). Qualquer valor fora desta faixa deve ser verificado, sendo os possíveis defeitos- chicote elétrico ou unidade de comando.

:: Processamento do sinal de entrada Há uma concepção enganosa sobre a função dos microprocessadores em automóveis. Muitos técnicos acreditam que os sinais de entrada movem-se através do microprocessador e retornam como sinal de saída.

Na realidade, os sinais recebidos pela unidade de comando, não podem ser usados na forma que são recebidos. Entretanto, cada sinal é convertido para um número digital (números binários).

Esses números correspondem a “0 ou 1”. O valor é tido como “0”quando não há tensão de saída e “1”quando existe um valor de tensão (no caso, 5 volts).

Os sensores geram um sinal de tensão compreendidos entre 0 volt a 5 volts (sinal analógico). Estes valores não podem ser processados pela CPU, a qual só entende números binários. Portanto, esses sinais devem ser convertidos para um sinal digital de 8 bits (até 256 combinações). O componente encarregado de converter esses sinais é chamado de conversor A/D (analógico para digital).

Aula 08 – Unidade de comando III Como vimos na aula anterior, a unidade de comando (CPU) só entendem os sinais digitais que são o “zero” e o “um”, ou seja, na ausência ou presença de sinais.

Observe na figura ao lado que existem 8 linhas de comunicação. Para cada uma das linhas, existe duas combinações. Quando a chave está aberta (ausência de sinal) o valor é interpretado como 0 e, quando a chave está fechada (presença de sinal) o valor interpretado é 1.

Como cada bit pode ter dois valores (0 ou 1), podemos :: Memória de entrada Os sinais de tensão analógica emitidos pelos sensores (valores entre 0 e 5 volts) são convertidos para sinais digitais pelo conversor A/D. Cada um dos valores digitais correspondem a um valor de tensão que estão gravados na memória de entrada.

Veja o exemplo da figura acima: O sensor de temperatura envia um sinal analógico de 0,75 volts à unidade de comando. Como a mesma não entende o que é 0,75 volts, esse sinal passa pelo conversor A/D onde é convertido para um sinal digital, de acordo com os valores gravados na memória de entrada. Em nosso exemplo, estamos associando o valor 11001000 (sinal digital) ao valor 0,75 volts (sinal analógico).

:: Unidade Central de processamento É o cérebro do sistema. É ele que faz todos os cálculos necessários para o funcionamento do sistema de injeção eletrônica e ignição.

A CPU recebe um sinal digital proveniente do conjunto de processamento de entrada (conversor A/D) que por sua vez, recebem os sinais analógicos dos sensores.

Os sinais digitais recebidos pela CPU são comparados com os valores (parâmetros) que estão gravados em uma memória fixa (memória de calibração ou EPROM) e retorna um outro sinal digital para a saída.

:: Memória programa (EPROM) Chamado de memória de calibração é onde são armazenados todos os parâmetros de funcionamento do sistema. Nessa memória, existe um mapa de controle de calibração de todas as condições de funcionamento do motor.

Este tipo de memória não se apaga com a ignição desligada ou com a bateria desconectada, por isso, é chamada de memória fixa.

No exemplo da figura anterior, o sensor de temperatura gerou um sinal analógico de 0,75 volts, o qual foi convertido no número binário 11001000. É este sinal que chega a CPU. Após receber esse sinal, a CPU compara esse valor com o que está gravado na memória de calibração, que no caso, o valor 11001000 corresponde a uma temperatura de 100 graus Celsius.

O sistema baseia-se mais ou menos assim: Na memória EPROM estão gravados os seguintes dados: 00100011 = 80 graus 00110011= 90 graus 11001000= 100 graus 11110011= 110 graus Observe que o valor 11001000 corresponde a uma temperatura de 100 graus Celsius.

Com essas informações, a unidade de comando determina, também através de sinais digitais o tempo de abertura das válvulas injetoras. Esse tempo de abertura corresponde a combinação 00011110 que será enviada a memória de saída.

:: Memória de saída Através do sinal digital enviado pela CPU e comparado com a memória de saída, o pulso dos injetores deve se manter por 9 milisegundos, ou seja, é determinado o tempo de injeção.

Observação: Os valores apresentados nos exemplos são apenas dados ilustrativos, para melhor compressão do sistema.

Aula 09 – Unidade de comando IV :: Funcionamento de emergência Um sistema digital permite verificar o perfeito funcionamento dos sensores e de alguns atuadores.

Caso ocorra a falha de um sensor, a CPU descarta o sinal enviado pelo mesmo e começa a fazer os cálculos a partir de outros sensores. Quando isso não for possível, existem dados (parâmetros) gravados em sua memória para substituição.

Por exemplo, se a unidade de comando perceber que existe uma falha no sensor de pressão absoluta do coletor (sensor MAP), ela ignora suas informações e vai fazer os cálculos de acordo com as informações da posição de borboleta (sensor TPS). Isso é possível porque, quanto maior for o ângulo de abertura da borboleta, maior será a pressão interna do coletor (vácuo baixo). Se caso o TPS também apresentar defeito, a unidade de comando irá trabalhar com um valor fixo gravado na sua memória que corresponde a 90 kpa (0,9 BAR).

:: Indicação de defeito A unidade de comando assume como defeito os valores que estão nos extremos. No exemplo do sensor de pressão absoluta, o sinal deve variar entre 0 a 5 volts. Quando é apresentado um dos valores extremos (0 ou 5), a CPU reconhece como defeito (tensão muito baixa ou muito alta). Nesse momento, ela começa a trabalhar com outras informações e imediatamente, avisa ao condutor através de uma lâmpada piloto um possível defeito no sistema. Esse defeito é gravado em código na memória de acesso aleatório (memória RAM) que poderá ser acessado para facilitar a busca do defeito.

:: Rastreamento dos códigos de defeito Como já foi descrito anteriormente, os defeitos ficam armazenados em códigos numa memória temporária (RAM) e pode ser checado os seus dados posteriormente.

Para checar os códigos gravados na memória RAM é necessário um equipamento chamado “SCANNER” ou “RASTREADOR”.

Até hoje muitas pessoas acreditam que esse aparelho é um computador que entra em contato com a unidade de comando do sistema de injeção. Na realidade, o scanner é apenas uma interface. O computador na realidade é a própria unidade de comando.

Para facilitar a explicação, imagine que você tentando abrir um documento no Microsoft Word com o monitor desligado ou sem a sua presença. Você sabe que o arquivo existe mas não pode visualizar os seus dados. Com a unidade do sistema de injeção ocorre a mesma coisa, podem haver dados gravadas na memória RAM só que você não tem acesso. Aí é que entra o scanner. Todo o conteúdo gravado na memória poderá ser visualizado no aparelho.

Atualmente existem grandes empresas que produzem esse aparelho, como por exemplo a Tecnomotor, a Alfatest, a Napro, a PlanaTC, etc.

Na figura acima mostramos os scanners da Tecnomotor (Rhaster) e da Alfatest (Kaptor 2000). A Napro e a PlanaTC não comercializam o scanner em si, mas os softwares necessários para o rastreamento, que podem ser instalados em qualquer computador Pentium 100 ou equivalente.

O scanner deve ser acoplado à uma saída serial da unidade de comando. Essa saída é um conector que pode estar localizado em diversos pontos do automóvel, dependendo da marca, do modelo e do ano de fabricação. A esse conector damos o nome de “conector de diagnóstico”. Falaremos nesse assunto mais adiante.

O scanner na realidade faz muito mais que buscar códigos de defeito gravados na memória. Ele pode ser utilizado para comparar dados, possibilitando dessa forma, verificar o perfeito funcionamento dos sensores e dos atuadores. Os mesmos dados que estão gravados na memória fixa de calibração (EPROM) também estão presentes no scanner (via software). Este software já pode estar gravado no próprio sistema no caso dos aparelhos da Napro e da PlanaTC ou em cartuchos (Tecnomotor ou Alfatest).

A figura acima mostra o equipamento SC 7000 da Planatc obtendo os dados dos sensores espalhados pelo motor. Os valores em vermelho indicam erro e os demais em verde que os dados conferem com a EPROM.

Também é possível via aparelho acionar e testar os atuadores do sistema, como: atuador de marcha lenta, relés, válvulas injetoras, etc.

Além do sistema de injeção, esses aparelhos também podem checar o sistema de freios ABS e o imobilizador eletrônico.

Obs: A Webmecauto.com não tem nenhum vínculo com as empresas citadas, portanto, não daremos maiores informações sobre os mesmos.

apenas um aparelho que irá auxiliar nas reparações. Muitos ainda acham que adquirindo um aparelho desses estará apto a trabalhar com o sistema, o que não é verdade.

Na próxima aula mostraremos mais detalhes sobre o rastreamento dos defeitos e como conseguir isso sem o uso do scanner.

Caso queiram obter informações sobre os aparelhos citados, visitem o site dos respectivos fabricantes. Se você não sabe o endereço, utilize nosso sistema de busca na WEB.

Aula 10 – Rastreando os códigos de defeito :: Rastreando defeitos sem o scanner Alguns sistemas de injeção digital permitem o rastreamento dos códigos de defeito sem a necessidade do scanner, por meio de códigos de piscadas.

Abaixo seguem os sistemas que permitem esse recurso: Antes de iniciarmos o rastreamento dos códigos de defeito, primeiramente é necessário sabermos o formato e a localização do conector de diagnóstico, independentemente se for utilizar o scanner ou não.

Acima são apresentados seis tipos de conectores. O número que precede a letra P (ex: 16P) é o número de pinos que o conector possui. Esses pinos poderão estar identificados por letras ou números.

:: Como trabalhar com o mapa Vamos ver um exemplo: O conector de diagnóstico utilizado no Fiat Tempra 16V é do tipo IV e fica localizado em H7 (coordenadas). Sendo assim, basta cruzar a letra com o número. O ponto deste cruzamento é a localização do conector. Neste caso, o conector fica localizado sob o porta-luvas do lado esquerdo.

Aula 10 – Tabela de localização dos conectores de diagnóstico TABELA 1

:: LINHA VOLKSWAGEN MODELO SISTEMA ANO CONECTOR LOCAL CORDOBA / IBIZA MONOMOTRONIC M1.2.3 96 III I5 GOL 1.0 / 1.6 / 1.8 – A/G FIC EEC-IV – CFI – MONOPONTO 95 A 96 V A1 GOL 1.0 Mi MOTRONIC MP 9.0 97 III H1 GOL 1.6 / 1.8 Mi MAGNETI MARELLI 1AVB 97 III H1 GOL GTi 2.0 G BOSCH LE JETRONIC 89 94 — — GOL GTi 2.0 – A/G FIC EEC-IV – EFI – MULTIPONTO 95 V A1 GOLF 1.8 G BOSCH MONOMOTRONIC M1.2.3 94 96 III H6 ou H4 GOLF 1.8 / 2.0 Mi DIGIFANT 97 III H6 LOGUS 1.6 / 1.8 – A/G FIC EEC-IV – CFI – MONOPONTO 95 96 V D8 LOGUS 2.0 – A/G FIC EEC-IV – EFI – MULTIPONTO 95 96 V D8 PARATI 1.6 / 1.8 – A/G FIC EEC-IV – CFI – MONOPONTO 95 97 V A1 PARATI 2.0 – A/G FIC EEC-IV – EFI – MULTIPONTO 96 V A1 PARATI 1.6 / 1.8 Mi MAGNETI MARELLI 1AVB 97 III H1 POINTER 1.8 – A/G FIC EEC-IV – CFI – MONOPONTO 94 V D8 POINTER 2.0 – A/G FIC EEC-IV – EFI – MULTIPONTO 94 V D8 POINTER 2.0 G BOSCH LE JETRONIC 93 94 — — POLO 1.8 Mi MAGNETI MARELLI 1AVB 97 III H2 SANTANA / QUANTUN 1.8 FIC EEC-IV – CFI – MONOPONTO 93 V D9 SANTANA / QUANTUN 2.0 – A/G FIC EEC-IV – CFI – MONOPONTO 94 V D9 SANTANA 2.0 G BOSCH LE JETRONIC 89 93 — — SANTANA / QUANTUN 1.8 / 2.0 Mi MAGNETI MARELLI 1AVB 97 III H3 SAVEIRO 1.6 / 1.8 Mi MAGNETI MARELLI 1AVB 97 III A8

TABELA 2 :: LINHA FIAT MODELO SISTEMA ANO CONECTOR LOCAL ELBA 1.5 / 1.6 ie – A/G MAGNETI MARELLI – SPI G6/G7 93 IV A5 ou H8 FIORINO 1.5 / 1.6 ie – A/G MAGNETI MARELLI – SPI G6/G7 93 96 IV A5 ou H8 FIORINO 1.5 mpi G MAGNETI MARELLI – IAW – 1G7 97 IV A5 FIORINO PICK-UP 1.6 mpi G BOSCH MOTRONIC M1.5.4 95 IV H8 PALIO 1.0 / 1.5 mpi G MAGNETI MARELLI – IAW – 1G7 96 IV A5 PALIO 16V 1.6 mpi G MAGNETI MARELLI – IAW – 1AB 96 IV A5 PALIO 1.6 ie MAGNETI MARELLI – SPI G6/G7 97 IV A5 ou H8 PREMIO 1.5 / 1.6 ie – A/G MAGNETI MARELLI – SPI G6/G7 93 96 IV A5 ou H8 SIENA 16V 1.6 mpi G MAGNETI MARELLI – IAW – 1AB 97 IV A5 SIENA 1.6 ie MAGNETI MARELLI – SPI G6/G7 97 IV A5 ou H8 TEMPRA 2.0 ie G MAGNETI MARELLI – SPI G6/G7 94 IV H8 TEMPRA 16V G MAGNETI MARELLI – G7 25 95 IV H7 TEMPRA 16V G MAGNETI MARELLI – IAW – P8 93 94 IV H7 TEMPRA 2.0 mpi TURBO – G BOSCH MOTRONIC M1.5.2 94 95 IV H8 TEMPRA SW SLX 2.0 ie – G MAGNETI MARELLI – IAW – P8 95 IV C6 ou B3 TIPO 1.6 ie G BOSCH MONOMOTRONIC M1.7 93 95 IV D2 TIPO 2.0 SLX G MAGNETI MARELLI – IAW – P8 94 96 IV B2 TIPO 1.6 mpi G BOSCH MOTRONIC M1.5.4 96 IV H8 UNO 1.0 ie G MAGNETI MARELLI – IAW G7.11 96 IV A5 UNO MILLE ELETRONIC G MAGNETI MARELLI – MICROPLEX 93 95 IV A2 UNO 1.5 ie – A/G MAGNETI MARELLI – SPI G6/G7 93 96 IV A5 ou H8 UNO 1.6 mpi G BOSCH MOTRONIC M1.5.4 95 96 IV H8 UNO 1.6R mpi G BOSCH LE JETRONIC 93 95 — —

Aula 11 – Tabela de localização dos conectores TABELA 3 :: LINHA FORD MODELO SISTEMA ANO CONECTOR LOCAL ESCORT 1.6 / 1.8 – A/G FIC EEC-IV – CFI – MONOPONTO 94 96 V C9 ESCORT 2.0i – A/G FIC EEC-IV – EFI – MULTIPONTO 95 96 V C9 ESCORT XR3 2.0i G BOSCH LE JETRONIC 93 94 — — EXPLORER FIC EEC-IV 3 DÍGITOS 92 96 V B2 EXPLORER FIC EEC-V 95 III H3 FIESTA 1.0 / 1.3 / 1.4 G FIC EEC-V 96 III I1 FIESTA 1.3 G MONOPONTO FIC EEC-IV 2 DÍGITOS 94 96 VI D9 F1000 SUPER 4.9i G FIC EEC-IV 3 DÍGITOS 95 V B8 KA 1.0 / 1.3 FIC EEC-IV 97 III I1 MONDEO 2.0 FIC EEC-V 97 III H3 RANGER FIC EEC-IV 3 DÍGITOS 93 95 V B8 RANGER 2.3 / 4.0i FIC EEC-V 95 III H3 VERSAILLES / ROYALE 1.8i A/G FIC EEC-IV – CFI – MONOPONTO 94 96 V D9 VERSAILLES / ROYALE 2.0i A/G FIC EEC-IV – EFI – MULTIPONTO 94 96 V D9 VERSAILLES / ROYALE 2.0i G BOSCH LE JETRONIC 92 94 — — VERONA 1.8i – A/G FIC EEC-IV – CFI – MONOPONTO 94 96 V C9 VERONA 2.0i – A/G FIC EEC-IV – EFI – MULTIPONTO 94 96 V C9

TABELA 4 :: LINHA CHEVROLET MODELO SISTEMA ANO CONECTOR LOCAL ASTRA 2.0 MPFI G BOSCH MOTRONIC M1.5.2 95 II H1 BLAZER 4.3 V6 ROCHESTER 97 III H3 CALIBRA 2.0 16V G BOSCH MOTRONIC M2.8 – C20XE 94 96 II A9 C20 4.1i G BOSCH MOTRONIC M2.8 96 I H2 ou H3 CORSA 1.0 / 1.6 MPFI G DELPHI MULTEC EMS 04/96 II H1 CORSA 1.0 / 1.4 EFI G ROCHESTER MULTEC SPI 94 96 II H1 CORSA PICK-UP 1.6 EFI G ROCHESTER MULTEC 95 96 II H1 CORSA PICK-UP 1.6 MPFI G DELPHI MULTEC EMS 04/96 II H1 IPANEMA 1.8 / 2.0 EFI A/G ROCHESTER MULTEC 700 92 I H9 KADETT 1.0 / 2.0 EFI A/G ROCHESTER MULTEC 700 92 I H9 KADETT 2.0 MPFI BOSCH MOTRONIC M1.5.4 97 I H2 KADETT GSi 2.0 G BOSCH LE JETRONIC 92 95 — — MONZA 1.8 / 2.0 A/G ROCHESTER MULTEC 700 91 96 I H9 MONZA 2.0 MPFI G BOSCH LE JETRONIC 89 94 — — OMEGA / SUPREMA 2.0 G BOSCH MOTRONIC M1.5.2 – C20NE 94 95 II A3 OMEGA / SUPREMA 2.0 A BOSCH MOTRONIC M1.5.2 93 95 II A3 OMEGA / SUPREMA 2.2 G DELPHI MULTEC EMS – C22NE 95 I H3 OMEGA / SUPREMA 4.1 G BOSCH MOTRONIC M2.8 – C41GE 95 I H3 OMEGA / SUPREMA CD 3.0 G BOSCH MOTRONIC M1.5.2 – C30NE 93 95 II A3 S1O PICK-UP / BLAZER 2.2 EFI DELPHI MULTEC – B22NZ 95 III H2 VECTRA GLS / CD 2.0 G BOSCH MOTRONIC M1.5.2 – C20NE 94 95 II A9 VECTRA GSi 2.0 16V G BOSCH MOTRONIC M2.8 – C20XE 94 95 II A9 VECTRA 2.0 G BOSCH MOTRONIC M1.5.4P – C20NE 96 III K6 VECTRA 2.0 16V G BOSCH MOTRONIC M1.5.4P – C20XE 96 III K6

Aula 11 – Obtendo os códigos Agora que você já tem condições de localizar o conector de diagnóstico iremos ver como obter os códigos de defeito dos sistemas que permitem esse processo sem a utilização do scanner.

:: Linha GM – Rochester / Delphi Multec e Bosch Motronic Todo processe se inicia por um jumper nos terminais do conector de diagnóstico. Logicamente para cada tipo de conector há um processo diferente na ligação.

Após feito o jumper, ao se ligar a chave de ignição, a lâmpada indicadora de anomalias no sistema de injeção localizada no painel de instrumentos começará a piscar. É justamente essas piscadas que iremos utilizar para descobrir qual o defeito gravado na memória RAM.

As piscadas ocorrem numa sequência lógica que vale para todos os sistemas de injeção cuja unidade de comando permite esta estratégia. Segue abaixo um exemplo: PISCA PISCA PAUSA CURTA – PISCA PISCA PISCA PISCA PISCA PAUSA LONGA

Observe que ocorreram duas piscadas e uma pausa curta. Em seguida mais cinco piscadas e uma pausa longa. As duas piscadas antes da pausa curta representa a dezena e as cinco piscadas após a pausa curta representa a unidade. Sendo assim, obtivemos o código 25.

Vamos a um outro exemplo: PISCA PISCA PISCA PAUSA CURTA – PISCA PISCA PAUSA LONGA

Cada código é repetido 3 vezes até passar para o próximo código. Sendo assim, se tivermos os códigos 25 e 32 gravados a sequência será: PISCA PAUSA CURTA – PISCA PISCA PAUSA LONGA PISCA PAUSA CURTA – PISCA PISCA PAUSA LONGA PISCA PAUSA CURTA – PISCA PISCA PAUSA LONGA PISCA PISCA PAUSA CURTA – PISCA PISCA PISCA PISCA PISCA PAUSA LONGA PISCA PISCA PAUSA CURTA – PISCA PISCA PISCA PISCA PISCA PAUSA LONGA PISCA PISCA PAUSA CURTA – PISCA PISCA PISCA PISCA PISCA PAUSA LONGA PISCA PISCA PISCA PAUSA CURTA – PISCA PISCA PAUSA LONGA PISCA PISCA PISCA PAUSA CURTA – PISCA PISCA PAUSA LONGA PISCA PISCA PISCA PAUSA CURTA – PISCA PISCA PAUSA LONGA

Veja que a sequência de códigos foram: 12 – 12 – 12 – 25 – 25 -25 – 32 – 32 – 32 Na linha GM o código 12 significa sem sinal de rotação. Como o motor vai estar parado no momento da verificação, esse código não é considerado defeito. Assim, caso o sistema não apresente nenhum defeito, somente o código 12 será apresentado.

Aula 12 – Obtendo o código de defeito por meio de um jumper Para se obter o código lampejante no sistema FIC EEC-IV de 2 dígitos utilizado nos veículos VW e FORD deve-se proceder da seguinte maneira: 1- Faça um jumper nos terminais 48 e 46 do conector de diagnóstico (localiza-se próximo à bateria);

2- Ligue um led em série com um resistor de 1Khoms e conecte o lado catodo do led no terminal 17 do conector de diagnóstico. A outra extremidade deve ser ligado ao borner positivo da bateria conforme mostra a figura abaixo:

3- Ligue a chave na posição ignição (sem dar partida). O led irá piscar rapidamente e logo em seguida começará a emitir os códigos. Por exemplo, se o led der uma piscada longa e cinco curtas significa que há falhas na unidade de comando (código 15);

Para se fazer os testes em modo dinâmico, utilize os seguintes procedimentos: 1- Funcione o motor e espere aquecer à temperatura normal (normalmente após o segundo acionamento do eletro- ventilador do sistema de arrefecimento);

3- Com isso, a unidade de comando fará a rotação do motor oscilar e o led irá piscar dando início ao teste dinâmico. Você deverá girar o volante de direção de batente a batente para que se possa capturar informações do interruptor de pressão da direção hidráulica, caso tenha;

Observação 3- Caso seja apresentado algum código diferente do 11 (sistema ok), apague a memória e funcione o motor, girando a direção de um lado ao outro e provocando acelerações bruscas no motor. Refaça novamente o teste estático e dinâmico. Caso o defeito persista, verifique o sistema indicado.

Observação 4- Os códigos lampejantes são apenas orientativos de modo a facilitar o diagnóstico do defeito jamais conclusivos.

Aula 12 – Tabela de códigos do sistema FIC EEC-IV A seguir mostraremos os códigos de falha referentes ao sistema FIC EEC-IV com dois dígitos. Cód Descrição do código lampejante 11 Sistema ok 12 Corretor da marcha lenta não eleva a rotação durante o teste dinâmico 13 Corretor da marcha lenta não reduz a rotação durante o teste dinâmico 14 Falha no sensor de rotação e PMS (hall) 15 Falha na unidade de comando 18 Avanço da ignição fixo ou com o shorting-plug desconectado ou em aberto 19 Sem tensão de referência (terminal 26) para os sensores de pressão e borboleta 21 Temperatura do líquido de arrefecimento fora da faixa 22 Pressão absoluta do coletor de admissão fora da faixa 23 Posição da borboleta de aceleração fora da faixa 24 Temperatura do ar admitido fora da faixa 29 Falha no circuito do sensor de velocidade 41 Falha no sinal da sonda lambda 42 Sonda lambda indica mistura rica 51 Temperatura do líquido de arrefecimento abaixo da faixa 52 Circuito do interruptor de carga da direção hidráulica aberto ou não muda de estado 53 Posição da borboleta de aceleração acima da faixa 54 Temperatura do ar admitido abaixo da faixa 55 Falha na alimentação da unidade de comando 61 Temperatura do líquido de arrefecimento acima da faixa 63 Posição da borboleta de aceleração abaixo da faixa 64 Temperatura do ar admitido acima da faixa 67 Condicionador de ar ligado durante o teste 72 Depressão insuficiente durante a resposta dinâmica 73 Aceleração insuficiente durante a resposta dinâmica 77 Resposta dinâmica não executada ( passo 5 do procedimento de teste não realizado) 85 Falha no circuito da eletroválvula de purga do canister 87 Falha no circuito de acionamento da bomba de combustível 95 Sinal da bomba de combustível ligada sem o comando da ECU 96 Sinal da bomba de combustível desligada sem o comando da ECU 98 Sistema de emergência Na próxima aula iremos ver como obter o código lampejante o sistema EEC-IV com três dígitos.

Aula 13 – Código lampejante FIC EEC-IV com três dígitos Para se obter o código lampejante no sistema EEC-IV com três dígitos procede-se da mesma forma que o de dois dígitos. A diferença fica por conta dos códigos e da posição do terminal 48 no conector de diagnóstico, que nesse sistema, fica isolado.

Você também poderá fazer a ligação no conector da unidade de comando que possui 60 pinos. Basta fazer um jumper nos terminais 46 e 48 e colocar o led com o resistor no terminal 17.

Aula 13 – Tabela de códigos do sistema FIC EEC-IV com 3 dígitos

Cód Descrição do código lampejante 338 Sensor de temperatura da água abaixo do esperado 339 Sensor de temperatura da água acima do esperado 341 Conector de octanagem em operação ou circuito aberto 411 Corretor de marcha lenta não eleva rotação 412 Corretor de marcha lenta não reduz rotação 452 Leitura insuficiente da velocidade do veículo 511 Falha na memória ROM 512 Falha na memória RAM 519 Circuito aberto no interruptor de carga da direção hidráulica 521 Interruptor de carga da direção hidráulica inoperante 524 Baixa rotação da bomba de combustível ou circuito aberto 528 Falha no circuito da embreagem do compressor do ar condicionado 529 Falha no circuito de comunicação de dados 551 Falha no circuito do corretor de marcha lenta 556 Falha no circuito primário do relé da bomba de combustível 557 Circuito primário do relé da bomba de combustível aberto 559 Falha no circuito do relé do ar condicionado 563 Falha no controle da segunda velocidade dos eletroventiladores 565 Falha no circuito da eletroválvula de purga do canister

13 VISUALIZAÇÕES DOWNLOAD